咨询与建议

限定检索结果

文献类型

  • 150 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 194 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 123 篇 工学
    • 80 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 27 篇 生物医学工程(可授...
    • 21 篇 生物工程
    • 17 篇 控制科学与工程
    • 16 篇 信息与通信工程
    • 12 篇 光学工程
    • 7 篇 电气工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 5 篇 核科学与技术
    • 4 篇 环境科学与工程(可...
    • 3 篇 力学(可授工学、理...
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
  • 84 篇 理学
    • 40 篇 数学
    • 27 篇 生物学
    • 24 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 8 篇 系统科学
    • 7 篇 化学
  • 32 篇 医学
    • 27 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 22 篇 管理学
    • 12 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 4 篇 公共管理
  • 8 篇 教育学
    • 6 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 3 篇 农学
  • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 历史学

主题

  • 7 篇 deep learning
  • 6 篇 machine learning
  • 4 篇 cosmological par...
  • 4 篇 galaxies
  • 4 篇 generative adver...
  • 4 篇 dark matter
  • 4 篇 contrastive lear...
  • 4 篇 large scale stru...
  • 4 篇 diseases
  • 4 篇 dark energy
  • 3 篇 image segmentati...
  • 3 篇 tensors
  • 3 篇 differential pri...
  • 3 篇 stochastic syste...
  • 3 篇 artificial intel...
  • 3 篇 forecasting
  • 2 篇 covid-19
  • 2 篇 optical, uv, & i...
  • 2 篇 object detection
  • 2 篇 cosmological con...

机构

  • 9 篇 department of ma...
  • 8 篇 departments of m...
  • 7 篇 department of co...
  • 7 篇 institute of cos...
  • 6 篇 department of mo...
  • 6 篇 university colle...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...

作者

  • 16 篇 moran shay
  • 8 篇 mukherjee sayan
  • 7 篇 hanneke steve
  • 7 篇 hassanpour saeed
  • 7 篇 frangi alejandro...
  • 5 篇 waknine tom
  • 5 篇 mansour yishay
  • 5 篇 sesia matteo
  • 5 篇 zhang anru r.
  • 5 篇 yehudayoff amir
  • 4 篇 i. tutusaus
  • 4 篇 j. weller
  • 4 篇 g. tarle
  • 4 篇 a. choi
  • 4 篇 j. l. marshall
  • 4 篇 i. harrison
  • 4 篇 li hongwei bran
  • 4 篇 j. annis
  • 4 篇 d. j. james
  • 4 篇 j. derose

语言

  • 128 篇 英文
  • 66 篇 其他
检索条件"机构=Departments of Computer Science and Data Science"
194 条 记 录,以下是91-100 订阅
排序:
CONCENTRATION INEQUALITIES AND OPTIMAL NUMBER OF LAYERS FOR STOCHASTIC DEEP NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2022年
作者: Caprio, Michele Mukherjee, Sayan PRECISE Center Department of Computer and Information Science University of Pennsylvania 3330 Walnut Street PhiladelphiaPA19104 United States Center for Scalable Data Analytics and Artificial Intelligence Universität Leipzig Humboldtstraße 25 Leipzig04105 Germany The Max Planck Institute for Mathematics in the Sciences Inselstraße 22 Leipzig04103 Germany Departments of Statistical Science Mathematics Computer Science and Biostatistics & Bioinformatics Duke University DurhamNC27708 United States
We state concentration inequalities for the output of the hidden layers of a stochastic deep neural network (SDNN), as well as for the output of the whole SDNN. These results allow us to introduce an expected classifi... 详细信息
来源: 评论
A general linear-time inference method for Gaussian processes on one dimension
收藏 引用
The Journal of Machine Learning Research 2021年 第1期22卷 10580-10615页
作者: Jackson Loper David Blei John P. Cunningham Liam Paninski Data Science Institute Columbia University New York New York Data Science Institute Departments of Statistics and Computer Science Columbia University New York New York Department of Statistics Mortimer B. Zuckerman Mind Brain Behavior Institute Grossman Center for the Statistics of Mind Columbia University New York New York Departments of Statistics and Neuroscience Mortimer B. Zuckerman Mind Brain Behavior Institute Grossman Center for the Statistics of Mind Columbia University New York New York
Gaussian Processes (GPs) provide powerful probabilistic frameworks for interpolation, forecasting, and smoothing, but have been hampered by computational scaling issues. Here we investigate data sampled on one dimensi...
来源: 评论
Searching for consistent associations with a multi-environment knockoff filter
arXiv
收藏 引用
arXiv 2021年
作者: Li, Shuangning Sesia, Matteo Romano, Yaniv Candès, Emmanuel Sabatti, Chiara Department of Statistics Stanford University United States Department of Data Sciences and Operations University of Southern California United States Departments of Electrical Engineering and of Computer Science Technion Israel Departments of Statistics and of Mathematics Stanford University United States Departments of Statistics and of Biomedical Data Sciences Stanford University United States
This paper develops a method based on model-X knockoffs to find conditional associations that are consistent across diverse environments, controlling the false discovery rate. The motivation for this problem is that l... 详细信息
来源: 评论
Intermediate layers Matter in momentum contrastive self supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Kaku, Aakash Upadhya, Sahana Razavian, Narges Center for Data Science New York University New YorkNY10011 United States Department of Computer Science Courant Institute of Mathematical Sciences New YorkNY10011 United States Departments of Population Health and Radiology NYU Grossman School of Medicine NYU Center for Data Science New YorkNY10016 United States
We show that bringing intermediate layers’ representations of two augmented versions of an image closer together in self supervised learning helps to improve the momentum contrastive (MoCo) method. To this end, in ad... 详细信息
来源: 评论
Variational and phase response analysis for limit cycles with hard boundaries, with applications to neuromechanical control problems
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Yangyang Gill, Jeffrey P. Chiel, Hillel J. Thomas, Peter J. Department of Mathematics The University of Iowa Iowa CityIA52242 United States Department of Biology Case Western Reserve University ClevelandOH44106 United States Departments of Biology Neurosciencesand Biomedical Engineering Case Western Reserve University ClevelandOH44106 United States Departments of Mathematics Applied Mathematics and StatisticsBiologyCognitive ScienceData and Computer Scienceand Electrical Control and Systems Engineering Case Western Reserve University ClevelandOH44106 United States
Motor systems show an overall robustness, but because they are highly nonlinear, understanding how they achieve robustness is difficult. In many rhythmic systems, robustness against perturbations involves response of ... 详细信息
来源: 评论
A Refined Deep Learning Architecture for Diabetic Foot Ulcers Detection
arXiv
收藏 引用
arXiv 2020年
作者: Goyal, Manu Hassanpour, Saeed Department of Biomedical Data Science Dartmouth College HanoverNH United States Departments of Biomedical Data Science Computer Science and Epidemiology Dartmouth College HanoverNH United States
Diabetic Foot Ulcers (DFU) that affect the lower extremities are a major complication of diabetes. Each year, more than 1 million diabetic patients undergo amputation due to failure to recognize DFU and get the proper... 详细信息
来源: 评论
Constructing A Multimodal Biomolecule Embedding Integration Platform to Support Comprehensive Biomedical Knowledge Representation
Journal of Molecular and Cellular Cardiology Plus
收藏 引用
Journal of Molecular and Cellular Cardiology Plus 2025年 12卷
作者: Yu Yan Baradwaj Simha Sankar Yijiao Xiao Alexander R. Pelletier Wei Wang Peipei Ping Departments of Physiology and Medicine @ University of California Los Angeles (UCLA) School of Medicine NHLBI Integrated Cardiovascular Data Science Training Program @ UCLA NIH BRIDGE2AI Center at UCLA & NHLBI Integrated Cardiovascular Data Science Training Program at UCLA Los Angeles USA Department of Computer Science and Scalable Analytics Institute at UCLA School of Engineering Los Angeles USA
来源: 评论
Maximum a posteriori inference of random dot product graphs via conic programming
arXiv
收藏 引用
arXiv 2021年
作者: Wu, David Palmer, David Deford, Daryl Departments of Math and Computer Science Massachusetts Institute of Technology United States Geometric Data Processing Group Massachusetts Institute of Technology United States Department of Mathematics and Statistics Washington State University United States
We present a convex cone program to infer the latent probability matrix of a random dot product graph (RDPG). The optimization problem maximizes the Bernoulli maximum likelihood function with an added nuclear norm reg... 详细信息
来源: 评论
Testing for Outliers with Conformal p-values
arXiv
收藏 引用
arXiv 2021年
作者: Bates, Stephen Candès, Emmanuel Lei, Lihua Romano, Yaniv Sesia, Matteo Departments of Statistics and of EECS UC Berkeley United States Departments of Statistics and of Mathematics Stanford University United States Department of Statistics Stanford University United States Departments of Electrical Engineering and of Computer Science Technion-Israel Institute of Technology Israel Department of Data Sciences and Operations University of Southern California United States
This paper studies the construction of p-values for nonparametric outlier detection, taking a multiple-testing perspective. The goal is to test whether new independent samples belong to the same distribution as a refe... 详细信息
来源: 评论
GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration
arXiv
收藏 引用
arXiv 2023年
作者: Dou, Haoran Bi, Ning Han, Luyi Huang, Yuhao Mann, Ritse Yang, Xin Ni, Dong Ravikumar, Nishant Frangi, Alejandro F. Huang, Yunzhi University of Leeds Leeds United Kingdom Department of Radiology and Nuclear Medicine Radboud University Medical Centre Nijmegen Netherlands Department of Radiology Netherlands Cancer Institute Amsterdam Netherlands National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Health Science Center Shenzhen University China Lab Shenzhen University China Marshall Laboratory of Biomedical Engineering Shenzhen University China Shenzhen RayShape Medical Technology Co. Ltd China Division of Informatics Imaging and Data Science Schools of Computer Science and Health Sciences University of Manchester Manchester United Kingdom Electrical Engineering and Cardiovascular Sciences Departments KU Leuven Leuven Belgium Alan Turing Institute London United Kingdom Institute for AI in Medicine School of Artificial Intelligence Nanjing University of Information Science and Technology Nanjing China
Deep learning-based deformable registration methods have been widely investigated in diverse medical applications. Learning-based deformable registration relies on weighted objective functions trading off registration... 详细信息
来源: 评论