咨询与建议

限定检索结果

文献类型

  • 146 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 190 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 123 篇 工学
    • 80 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 27 篇 生物医学工程(可授...
    • 21 篇 生物工程
    • 17 篇 控制科学与工程
    • 16 篇 信息与通信工程
    • 12 篇 光学工程
    • 7 篇 电气工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 5 篇 核科学与技术
    • 4 篇 环境科学与工程(可...
    • 3 篇 力学(可授工学、理...
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
  • 83 篇 理学
    • 40 篇 数学
    • 27 篇 生物学
    • 24 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 8 篇 系统科学
    • 7 篇 化学
  • 31 篇 医学
    • 26 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 22 篇 管理学
    • 12 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 4 篇 公共管理
  • 8 篇 教育学
    • 6 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 3 篇 农学
  • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 历史学

主题

  • 7 篇 deep learning
  • 6 篇 machine learning
  • 4 篇 cosmological par...
  • 4 篇 galaxies
  • 4 篇 generative adver...
  • 4 篇 dark matter
  • 4 篇 contrastive lear...
  • 4 篇 large scale stru...
  • 4 篇 diseases
  • 4 篇 dark energy
  • 3 篇 image segmentati...
  • 3 篇 tensors
  • 3 篇 differential pri...
  • 3 篇 stochastic syste...
  • 3 篇 artificial intel...
  • 3 篇 forecasting
  • 2 篇 covid-19
  • 2 篇 optical, uv, & i...
  • 2 篇 object detection
  • 2 篇 cosmological con...

机构

  • 9 篇 department of ma...
  • 8 篇 departments of m...
  • 7 篇 department of co...
  • 7 篇 institute of cos...
  • 6 篇 department of mo...
  • 6 篇 university colle...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...

作者

  • 16 篇 moran shay
  • 8 篇 mukherjee sayan
  • 7 篇 hanneke steve
  • 7 篇 hassanpour saeed
  • 7 篇 frangi alejandro...
  • 5 篇 waknine tom
  • 5 篇 mansour yishay
  • 5 篇 sesia matteo
  • 5 篇 zhang anru r.
  • 5 篇 yehudayoff amir
  • 4 篇 i. tutusaus
  • 4 篇 j. weller
  • 4 篇 g. tarle
  • 4 篇 a. choi
  • 4 篇 j. l. marshall
  • 4 篇 i. harrison
  • 4 篇 li hongwei bran
  • 4 篇 j. annis
  • 4 篇 d. j. james
  • 4 篇 j. derose

语言

  • 144 篇 英文
  • 46 篇 其他
检索条件"机构=Departments of Computer Science and Data Science"
190 条 记 录,以下是81-90 订阅
排序:
Synthesising 3D Cardiac CINE-MR Images and Corresponding Segmentation Masks using a Latent Diffusion Model
Synthesising 3D Cardiac CINE-MR Images and Corresponding Seg...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Nina Cheng Zhengji Liu Yash Deo Haoran Dou Ning Bi Kun Wu Fengming Lin Zeike A Taylor Nishant Ravikumar Alejandro F Frangi CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine University of Leeds School of Optometry The Hong Kong Polytechnic University NIHR Leeds Biomedical Research Centre Leeds UK Alan Turing Institute London UK Division of Informatics Imaging and Data Science Schools of Computer Science and Health Sciences University of Manchester Manchester UK Cardiovascular Sciences Departments Medical Imaging Research Center (MIRC) Electrical Engineering KU Leuven Leuven Belgium
We propose a novel pipeline for the generation of synthetic full spatial cine cardiac magnetic resonance (CMR) images via a latent Denoising Diffusion Implicit Models (DDIMs). These synthetic images can be used as via... 详细信息
来源: 评论
Text Generation to Aid Depression Detection: A Comparative Study of Conditional Sequence Generative Adversarial Networks
Text Generation to Aid Depression Detection: A Comparative S...
收藏 引用
IEEE International Conference on Big data
作者: ML Tlachac Walter Gerych Kratika Agrawal Benjamin Litterer Nicholas Jurovich Saitheeraj Thatigotla Jidapa Thadajarassiri Elke A. Rundensteiner Department of Information Systems & Analytics Center for Health & Behavioral Sciences Bryant University Smithfield USA Data Science and Computer Science Departments Worcester Polytechnic Institute (WPI) Worcester USA School of Information University of Michigan Ann Arbor USA University of Tennessee Knoxville TN
Corpuses of unstructured textual data, such as text messages between individuals, are often predictive of medical issues such as depression. The text data usually used in healthcare applications has high value and gre... 详细信息
来源: 评论
E-Learning: A Successful Learning Environment
E-Learning: A Successful Learning Environment
收藏 引用
computer science and Emerging Technologies (CSET), International Conference on
作者: Fayiz Momani Amer Ahmad Hatamleh Wan Mohd Amir Fazamin Wan Hamzah Julaily Aida Jusoh Muhammad D. Zakaria Sunanda Das E-business & Commerce Department Faculty of Management and Financial Sciences University of Petra (UOP) Jordan Head of Departments Faculty of Business and Financial Science MIS BI and Data Analysis Irbid National University Irbid Jordan Faculty of Informatics and Computing (UniSZA) Malaysia Faculty of Informatics and Computing UniSZA Malaysia Cyber Security School of Computer Science and Engineering Jain University Bangalore India
Education is developing with the economy. This led to the creation of e-Iearning tools for instructors and students. In e-learning, electronic resources are used to teach. E-learning can be taught in or out of school,...
来源: 评论
Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice
arXiv
收藏 引用
arXiv 2024年
作者: Weiner, Ellison B. Dankwa-Mullan, Irene Nelson, William A. Hassanpour, Saeed Dartmouth College HanoverNH03755 United States Department of Health Policy and Management Milken Institute School of Public Health The George Washington University WashingtonDC20052 United States Dartmouth Institute for Health Policy and Clinical Practice Geisel School of Medicine Dartmouth College HanoverNH03755 United States Departments of Biomedical Data Science Computer Science and Epidemiology Geisel School of Medicine Dartmouth College HanoverNH03755 United States
Artificial intelligence (AI) has rapidly transformed various sectors, including healthcare, where it holds the potential to revolutionize clinical practice and improve patient outcomes. However, its integration into m... 详细信息
来源: 评论
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Yuetian Zhang, Anru R. Data Science Institute University of Chicago ChicagoIL60637 United States Departments of Biostatistics & Bioinformatics and Computer Science Duke University DurhamNC27710 United States
In this paper, we consider the estimation of a low Tucker rank tensor from a number of noisy linear measurements. The general problem covers many specific examples arising from applications, including tensor regressio... 详细信息
来源: 评论
Estimating Total Treatment Effect in Randomized Experiments with Unknown Network Structure
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Christina Lee Airoldi, Edoardo M. Borgs, Christian Chayes, Jennifer T. School of Operations Research and Information Engineering Cornell University IthacaNY United States Department of Statistics Operations and Data Science Fox School of Business Temple University PhiladelphiaPA United States Department of Electrical Engineering and Computer Science UC Berkeley BerkeleyCA United States Departments of Electrical Engineering and Computer Science Statistics Mathematics The School of Information UC Berkeley BerkeleyCA United States
Randomized experiments are widely used to estimate the causal effects of a proposed treatment in many areas of science, from medicine and healthcare to the physical and biological sciences, from the social sciences to... 详细信息
来源: 评论
Intermediate layers matter in momentum contrastive self supervised learning  21
Intermediate layers matter in momentum contrastive self supe...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Aakash Kaku Sahana Upadhya Narges Razavian Center for Data Science New York University New York NY Department of Computer Science Courant Institute of Mathematical Sciences New York NY Departments of Population Health and Radiology NYU Grossman School of Medicine and NYU Center for Data Science New York NY
We show that bringing intermediate layers' representations of two augmented versions of an image closer together in self supervised learning helps to improve the momentum contrastive (MoCo) method. To this end, in...
来源: 评论
HOW DOES THE BRAIN COMPUTE WITH PROBABILITIES?
arXiv
收藏 引用
arXiv 2024年
作者: Haefner, Ralf M. Beck, Jeff Savin, Cristina Salmasi, Mehrdad Pitkow, Xaq Department of Brain and Cognitive Sciences University of Rochester RochesterNY United States Department of Neurobiology Duke University DurhamNC United States Departments of Neural Science and Data Science New York University New YorkNY United States Gatsby Computational Neuroscience Unit Max Planck UCL Centre for Computational Psychiatry and Ageing Research University College London United Kingdom Neuroscience Institute Department of Machine Learning Carnegie Mellon University PittsburghPA United States Department of Neuroscience Center for Neuroscience and Artificial Intelligence Baylor College of Medicine HoustonTX United States Department of Electrical and Computer Engineering Department of Computer Science Rice University HoustonTX United States
This perspective piece is the result of a Generative Adversarial Collaboration (GAC) tackling the question 'How does neural activity represent probability distributions?'. We have addressed three major obstacl... 详细信息
来源: 评论
CONCENTRATION INEQUALITIES AND OPTIMAL NUMBER OF LAYERS FOR STOCHASTIC DEEP NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2022年
作者: Caprio, Michele Mukherjee, Sayan PRECISE Center Department of Computer and Information Science University of Pennsylvania 3330 Walnut Street PhiladelphiaPA19104 United States Center for Scalable Data Analytics and Artificial Intelligence Universität Leipzig Humboldtstraße 25 Leipzig04105 Germany The Max Planck Institute for Mathematics in the Sciences Inselstraße 22 Leipzig04103 Germany Departments of Statistical Science Mathematics Computer Science and Biostatistics & Bioinformatics Duke University DurhamNC27708 United States
We state concentration inequalities for the output of the hidden layers of a stochastic deep neural network (SDNN), as well as for the output of the whole SDNN. These results allow us to introduce an expected classifi... 详细信息
来源: 评论
A general linear-time inference method for Gaussian processes on one dimension
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2021年 第1期22卷 10580-10615页
作者: Jackson Loper David Blei John P. Cunningham Liam Paninski Data Science Institute Columbia University New York New York Data Science Institute Departments of Statistics and Computer Science Columbia University New York New York Department of Statistics Mortimer B. Zuckerman Mind Brain Behavior Institute Grossman Center for the Statistics of Mind Columbia University New York New York Departments of Statistics and Neuroscience Mortimer B. Zuckerman Mind Brain Behavior Institute Grossman Center for the Statistics of Mind Columbia University New York New York
Gaussian Processes (GPs) provide powerful probabilistic frameworks for interpolation, forecasting, and smoothing, but have been hampered by computational scaling issues. Here we investigate data sampled on one dimensi...
来源: 评论