This study examines the impact of environmental, social, and governance (ESG) factors on economic investment from a statistical perspective, aiming to develop a tested investment strategy that capitalizes on the conne...
详细信息
The process of modifying digital images has been made significantly easier by the availability of several image editing software. However, in a variety of contexts, including journalism, judicial processes, and histor...
详细信息
Unstructured Numerical Image Dataset Separation (UNIDS) method employing an enhanced unsupervised clustering technique. The objective is to delineate an optimal number of distinct groups within the input grayscale (G-...
详细信息
Multiagent Reinforcement Learning (MARL) plays a pivotal role in intelligent vehicle systems, offering solutions for complex decision-making, coordination, and adaptive behavior among autonomous agents. This review ai...
详细信息
Multiagent Reinforcement Learning (MARL) plays a pivotal role in intelligent vehicle systems, offering solutions for complex decision-making, coordination, and adaptive behavior among autonomous agents. This review aims to highlight the importance of fostering trust in MARL and emphasize the significance of MARL in revolutionizing intelligent vehicle systems. First, this paper summarizes the fundamental methods of MARL. Second, it identifies the limitations of MARL in safety, robustness, generalization, and ethical constraints and outlines the corresponding research methods. Then we summarize their applications in intelligent vehicle systems. Considering human interaction is essential to practical applications of MARL in various domains, the paper also analyzes the challenges associated with MARL's applications in human-machine systems. These challenges, when overcome, could significantly enhance the real-world implementation of MARL-based intelligent vehicle systems. IEEE
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (M...
详细信息
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (ML) and Deep Learning (DL) techniques. This model aims to shed light on the design process of a multilayer optical filter, making it more cost-effective by providing faster and more precise production. In creating this model, a dataset containing data obtained from 3000 (1500 Ge–Al2O3, 1500 Ge–SiO2) simulations previously performed on a computer based on the thicknesses of multilayer structural materials was used. The data are generated using Computational Electromagnetic simulation software based on the Finite-Difference Time-Domain method. To understand the mechanism of the proposed model, two different two-layer coating simulations were studied. While Ge was used as the substrate in both coatings, Al2O3 and SiO2 were used as the second layers. The data set consists of the 3–5 µm and 8–12 µm bands typical for the mid-wave infrared (MWIR) and long-wave infrared (LWIR) bands and includes reflectance values for wavelengths ranging between these spectra. In the specified 2-layer data set, the average reflectance was obtained with a minimum of 0.36 at 515 nm Ge and 910 nm SiO2 thicknesses. This value can be increased by adapting the proposed model to more than 2 layers. Six ML algorithms and a DL model, including artificial neural networks and convolutional neural networks, are evaluated to determine the most effective approach for predicting reflectance properties. Furthermore, in the proposed model, a hyperparameter tuning phase is used in the study to compare the efficiency of ML and DL methods to generate dual-band ARC and maximize the prediction accuracy of the DL algorithm. To our knowledge, this is the first time this has been implemented in this field. The results show that ML models, particularly decision tree (MSE: 0.00000069, RMSE: 0.00083), rand
In this work, the SHA-256 mapper of the blockchain has been utilized to secure medical data from brute-force attacks. The uniform distribution and lower correlation of the encrypted data are achieved using the multi-c...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameter...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameters are chosen. The purpose of this research is to present the corrosion prevention mechanism of the PCCP technique by taking into account the effects of duty cycle as well as frequency, modeling the relationships between pulse parameters(frequency and duty cycle) and system outputs(corrosion rate, protective current and pipe-to-soil potential) and finally identifying the most effective protection conditions over a wide range of frequency(2–10 kHz) and duty cycle(25%-75%). For this, pipe-to-soil potential, pH, current and power consumption, corrosion rate, surface deposits and investigation of pitting corrosion were taken into account. To model the input-output relationship in the PCCP method, a data-driven machine learning approach was used by training an artificial neural network(ANN). The results revealed that the PCCP system could yield the best protection conditions at 10 kHz frequency and 50% duty cycle, resulting in the longest protection length with the lowest corrosion rate at a consumption current 0.3 time that of the DCCP method. In the frequency range of 6–10 kHz and duty cycles of 50%-75%, SEM images indicated a uniform distribution of calcite deposits and no pits on cathode surface.
Fruit safety is a critical component of the global economy, particularly within the agricultural sector. There has been a recent surge in the incidence of diseases affecting fruits, leading to economic setbacks in agr...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communicati...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communication through open networks is insecure and has many vulnerabilities, making it susceptible to unauthorized access and misuse. Encryption models are used to secure medical data from unauthorized access. In this work, we propose a bit-level encryption model having three phases: preprocessing, confusion, and diffusion. This model is designed for different types of medical data including patient information, clinical data, medical signals, and images of different modalities. Also, the proposed model is effectively implemented for grayscale and color images with varying aspect ratios. Preprocessing has been applied based on the type of medical data. A random permutation has been used to scramble the data values to remove the correlation, and multilevel chaotic maps are fused with the cyclic redundancy check method. A circular shift is used in the diffusion phase to increase randomness and security, providing protection against potential attacks. The CRC method is further used at the receiver side for error detection. The performance efficiency of the proposed encryption model is proved in terms of histogram analysis, information entropy, correlation analysis, signal-to-noise ratio, peak signal-to-noise ratio, number of pixels changing rate, and unified average changing intensity. The proposed bit-level encryption model therefore achieves information entropy values ranging from 7.9669 to 8.000, which is close to the desired value of 8. Correlation coefficient values of the encrypted data approach to zero or are negative, indicating minimal correlation in encrypted data. Resistance against differential attacks is demonstrated by NPCR and UACI values exceeding 0.9960 and 0.3340, respectively. The key space of the proposed model is 1096, which is substantially mor
In the Internet of Things (IoT), optimizing machine performance through data analysis and improved connectivity is pivotal. Addressing the growing need for environmentally friendly IoT solutions, we focus on "gre...
详细信息
暂无评论