The multi-layer vector approximate message passing algorithm is applied to the problem of channel estimation in underwater acoustic communication addressing the estimation of time-varying channel characteristics. A pr...
详细信息
作者:
Zjavka, LadislavDepartment of Computer Science
Faculty of Electrical Engineering and Computer Science VŠB-Technical University of Ostrava 17. Listopadu 15/2172 Ostrava Czech Republic
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV for...
详细信息
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV forecasting is unavoidable in supply and load planning necessary in integration of smart systems into electrical grids. Intra- or day-ahead modelling of weather patterns based on Artificial Intelligence (AI) allows one to refine available 24 h. cloudiness forecast or predict PV production at a particular plant location during the day. AI usually gets an adequate prediction quality in shorter-level horizons, using the historical meteo- and PV record series as compared to Numerical Weather Prediction (NWP) systems. NWP models are produced every 6 h to simulate grid motion of local cloudiness, which is additionally delayed and usually scaled in a rough less operational applicability. Differential Neural Network (DNN) is based on a newly developed neurocomputing strategy that allows the representation of complex weather patterns analogous to NWP. DNN parses the n-variable linear Partial Differential Equation (PDE), which describes the ground-level patterns, into sub-PDE modules of a determined order at each node. Their derivatives are substituted by the Laplace transforms and solved using adapted inverse operations of Operation Calculus (OC). DNN fuses OC mathematics with neural computing in evolution 2-input node structures to form sum modules of selected PDEs added step-by-step to the expanded composite model. The AI multi- 1…9-h and one-stage 24-h models were evolved using spatio-temporal data in the preidentified daily learning sequences according to the applied input–output data delay to predict the Clear Sky Index (CSI). The prediction results of both statistical schemes were evaluated to assess the performance of the AI models. Intraday models obtain slightly better prediction accuracy in average errors compared to those applied in the second-day-ahead
Knowledge explosion is associated with the exponential growth of research literature production, triggering the need for new approaches to structure and synthesize knowledge. Traditional knowledge synthesis approaches...
详细信息
Coping with noise in computing is an important problem to consider in large systems. With applications in fault tolerance (Hastad et al., 1987;Pease et al., 1980;Pippenger et al., 1991), noisy sorting (Shah and Wainwr...
详细信息
Coping with noise in computing is an important problem to consider in large systems. With applications in fault tolerance (Hastad et al., 1987;Pease et al., 1980;Pippenger et al., 1991), noisy sorting (Shah and Wainwright, 2018;Agarwal et al., 2017;Falahatgar et al., 2017;Heckel et al., 2019;Wang et al., 2024a;Gu and Xu, 2023;Kunisky et al., 2024), noisy searching (Berlekamp, 1964;Horstein, 1963;Burnashev and Zigangirov, 1974;Pelc, 1989;Karp and Kleinberg, 2007), among many others, the goal is to devise algorithms with the minimum number of queries that are robust enough to detect and correct the errors that can happen during the computation. In this work, we consider the noisy computing of the threshold-k function. For n Boolean variables x = (x1, ..., xn) ∈ {0, 1}n, the threshold-k function THk(·) computes whether the number of 1's in x is at least k or not, i.e., (Equation presented) The noisy queries correspond to noisy readings of the bits, where at each time step, the agent queries one of the bits, and with probability p, the wrong value of the bit is returned. It is assumed that the constant p ∈ (0, 1/2) is known to the agent. Our goal is to characterize the optimal query complexity for computing the THk function with error probability at most δ. This model for noisy computation of the THk function has been studied by Feige et al. (1994), where the order of the optimal query complexity is established;however, the exact tight characterization of the optimal number of queries is still open. In this paper, our main contribution is tightening this gap by providing new upper and lower bounds for the computation of the THk function, which simultaneously improve the existing upper and lower bounds. The main result of this paper can be stated as follows: for any 1 ≤ k ≤ n, there exists an algorithm that computes the THk function with an error probability at most δ = o(1), and the algorithm uses at most (Equation presented) queries in expectation. Here we define m (Eq
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature...
详细信息
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature, and computational efficiency. Nevertheless, in existing kNN algorithms, the kNN radius, which plays a major role in the quality of kNN estimates, is independent of any weights associated with the training samples in a kNN-neighborhood. This omission, besides limiting the performance and flexibility of kNN, causes difficulties in correcting for covariate shift (e.g., selection bias) in the training data, taking advantage of unlabeled data, domain adaptation and transfer learning. We propose a new weighted kNN algorithm that, given training samples, each associated with two weights, called consensus and relevance (which may depend on the query on hand as well), and a request for an estimate of the posterior at a query, works as follows. First, it determines the kNN neighborhood as the training samples within the kth relevance-weighted order statistic of the distances of the training samples from the query. Second, it uses the training samples in this neighborhood to produce the desired estimate of the posterior (output label or value) via consensus-weighted aggregation as in existing kNN rules. Furthermore, we show that kNN algorithms are affected by covariate shift, and that the commonly used sample reweighing technique does not correct covariate shift in existing kNN algorithms. We then show how to mitigate covariate shift in kNN decision rules by using instead our proposed consensus-relevance kNN algorithm with relevance weights determined by the amount of covariate shift (e.g., the ratio of sample probability densities before and after the shift). Finally, we provide experimental results, using 197 real datasets, demonstrating that the proposed approach is slightly better (in terms of F-1 score) on average than competing benchmark approaches for mit
This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's iterates are influenced both by the values it receives from potentially malicious neigh...
详细信息
Halftone classification is a primary requisite for the perfect reconstruction of binary patterns during inverse halftone process. Majority of the halftone classification techniques are either limited to error diffused...
详细信息
The exponential growth of scientific literature poses a significant challenge to researchers, resulting in redundancy in R&D due to inefficient review mechanisms. Manual literature reviews are time-consuming and r...
详细信息
An Internet of Mobile Things (IoMT) refers to an internetworked group of pervasive devices that coordinate their motion and task execution through frequent status and data exchange. An IoMT could be serving critical a...
详细信息
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal *** current deepfake generator...
详细信息
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal *** current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac *** this gap,many researchers have developed detection methods focusing on biometric *** methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection ***,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac *** introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification ***,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention *** experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
暂无评论