Predictability is an essential challenge for autonomous vehicles(AVs)’*** neural networks have been widely deployed in the AV’s perception ***,it is still an open question on how to guarantee the perception predicta...
详细信息
Predictability is an essential challenge for autonomous vehicles(AVs)’*** neural networks have been widely deployed in the AV’s perception ***,it is still an open question on how to guarantee the perception predictability for AV because there are millions of deep neural networks(DNNs)model combinations and system configurations when deploying DNNs in *** paper proposes configurable predictability testbed(CPT),a configurable testbed for quantifying the predictability in AV’s perception *** provides flexible configurations of the perception pipeline on data,DNN models,fusion policy,scheduling policies,and predictability *** top of CPT,the researchers can profile and optimize the predictability issue caused by different application and system *** has been open-sourced at:https://***/Torreskai0722/CPT.
The 5G New Radio (NR) network rollout calls for innovative methods to satisfy the growing demand for low latency, large data speeds, and consistent connectivity. Focussing on integrating several channels and signals, ...
详细信息
Lightweight yet reliable depth estimation models that can deployed on edge devices are crucial for the practical application of fields such as autonomous driving, robot navigation, and augmented reality. However, prev...
详细信息
We study the problem of approximately transforming a sample from a source statistical model to a sample from a target statistical model without knowing the parameters of the source model, and construct several computa...
详细信息
The atomic density of an alkali vapor cell is a critical factor in determining the performance of atomic magnetometers. This paper presents a novel method to detect the density of an alkali atomic ensemble under arbit...
详细信息
Using underwater robots instead of humans for the inspection of coastal piers can enhance efficiency while reducing risks. A key challenge in performing these tasks lies in achieving efficient and rapid path planning ...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS **...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS *** this paper,a Fuzzy C-Means(FCM)clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by ***,a time series dataset is created in the time domain using AEFS *** AEFS-based weather is evaluated according to the time-series Membership Degree(MD)changes obtained by inputting this dataset into the ***,thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF ***,a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space ***,the rationality and reliability of the proposed method are verified by combining radar charts and expert *** results confirm that this method accurately characterizes the weather attributes and changes in the AEFS,and a negative distance-MD correlation is obtained for the first *** detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
Non-orthogonal multiple access (NOMA), multiple-input multiple-output (MIMO) and mobile edge computing (MEC) are prominent technologies to meet high data rate demand in the sixth generation (6G) communication networks...
详细信息
Non-orthogonal multiple access (NOMA), multiple-input multiple-output (MIMO) and mobile edge computing (MEC) are prominent technologies to meet high data rate demand in the sixth generation (6G) communication networks. In this paper, we aim to minimize the transmission delay in the MIMO-MEC in order to improve the spectral efficiency, energy efficiency, and data rate of MEC offloading. Dinkelbach transform and generalized singular value decomposition (GSVD) method are used to solve the delay minimization problem. Analytical results are provided to evaluate the performance of the proposed Hybrid-NOMA-MIMO-MEC system. Simulation results reveal that the H-NOMA-MIMO-MEC system can achieve better delay performance and lower energy consumption compared to OMA.
The increasing complexity of optical communication systems and networks necessitates advanced methodologies for extracting valuable insights from vast and heterogeneous datasets. Machine learning (ML) and deep learnin...
详细信息
The increasing complexity of optical communication systems and networks necessitates advanced methodologies for extracting valuable insights from vast and heterogeneous datasets. Machine learning (ML) and deep learning (DL) have emerged as pivotal tools in this domain, revolutionizing data analysis and enabling automated self-configuration in optical communication systems. Their adoption is fueled by the growing intricacy of systems and links, driven by numerous adjustable and interdependent parameters. This complexity is particularly evident in areas such as coherent transceivers, advanced digital signal processing, optical performance monitoring, cross-layer network optimizations, and nonlinearity compensation. While ML and DL offer immense potential, their application in optical communications is still in its early stages, with significant opportunities remaining unexplored. Many algorithms have yet to be fully deployed in practical settings, underscoring the emerging nature of this research area. This paper presents a comprehensive survey of ML and DL applications across optical fiber communication (OFC), optical wireless communication (OWC), and optical communication networking (OCN), highlighting the challenges, current advancements, and future potential of these approaches. To address the identified gaps, this survey evaluates and compares ML and DL algorithms in terms of their performance, complexity, objectives, input data, metrics, and applications in optical communication. Specific emphasis is placed on identifying how these algorithms enhance system performance and optimization. Furthermore, the advantages and limitations of existing methods are analyzed, offering a clear perspective on the role of ML and DL in this domain. The survey also includes updated visual representations and domain-specific examples to elucidate the practical applications of ML and DL in OFC, OWC, and OCN. It concludes by discussing the open challenges, proposing potential soluti
Point clouds offer realistic 3D representations of objects and scenes at the expense of large data volumes. To represent such data compactly in real-world applications, Video-Based Point Cloud Compression (V-PCC) conv...
详细信息
暂无评论