Time-synchronization (TS) formation control for unmanned surface vehicles (USVs) presents several advantages, including precise execution of tasks, broadened combat capabilities, and improved information fusion qualit...
详细信息
Time-synchronization (TS) formation control for unmanned surface vehicles (USVs) presents several advantages, including precise execution of tasks, broadened combat capabilities, and improved information fusion quality. To achieve this performance, a time-synchronized formation control method is presented that takes into account direct topology, external disturbances, and system uncertainties (EDSU). In contrast to prior formation control strategies, we introduce the formalized time-synchronized formation control framework, where all state components of the formation system concurrently converge to the equilibrium point at a uniform time constant, independently of their initial states. To counteract the EDSU, a fixed-time disturbance observer is designed to guarantee the convergence of all observer error components to zero. System stability is corroborated through the application of Lyapunov-like theory. Simulations and comparative experiments on three USVs are conducted to demonstrate the proposed method's superiority. IEEE
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular puls...
详细信息
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular pulse *** diagnostic methods often struggle with the nuanced interplay of these risk factors,making early detection *** this research,we propose a novel artificial intelligence-enabled(AI-enabled)framework for CVD risk prediction that integrates machine learning(ML)with eXplainable AI(XAI)to provide both high-accuracy predictions and transparent,interpretable *** to existing studies that typically focus on either optimizing ML performance or using XAI separately for local or global explanations,our approach uniquely combines both local and global interpretability using Local Interpretable Model-Agnostic Explanations(LIME)and SHapley Additive exPlanations(SHAP).This dual integration enhances the interpretability of the model and facilitates clinicians to comprehensively understand not just what the model predicts but also why those predictions are made by identifying the contribution of different risk factors,which is crucial for transparent and informed decision-making in *** framework uses ML techniques such as K-nearest neighbors(KNN),gradient boosting,random forest,and decision tree,trained on a cardiovascular ***,the integration of LIME and SHAP provides patient-specific insights alongside global trends,ensuring that clinicians receive comprehensive and actionable *** experimental results achieve 98%accuracy with the Random Forest model,with precision,recall,and F1-scores of 97%,98%,and 98%,*** innovative combination of SHAP and LIME sets a new benchmark in CVD prediction by integrating advanced ML accuracy with robust interpretability,fills a critical gap in existing *** framework paves the way for more explainable and transparent decision-making in he
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...
详细信息
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
Recently, the authors showed that Reed-Muller (RM) codes achieve capacity on binary memoryless symmetric (BMS) channels with respect to bit error rate. This paper extends that work by showing that RM codes defined on ...
详细信息
The phenomenon of atmospheric haze arises due to the scattering of light by minute particles suspended in the atmosphere. This optical effect gives rise to visual degradation in images and videos. The degradation is p...
详细信息
The phenomenon of atmospheric haze arises due to the scattering of light by minute particles suspended in the atmosphere. This optical effect gives rise to visual degradation in images and videos. The degradation is primarily influenced by two key factors: atmospheric attenuation and scattered light. Scattered light causes an image to be veiled in a whitish veil, while attenuation diminishes the image inherent contrast. Efforts to enhance image and video quality necessitate the development of dehazing techniques capable of mitigating the adverse impact of haze. This scholarly endeavor presents a comprehensive survey of recent advancements in the domain of dehazing techniques, encompassing both conventional methodologies and those founded on machine learning principles. Traditional dehazing techniques leverage a haze model to deduce a dehazed rendition of an image or frame. In contrast, learning-based techniques employ sophisticated mechanisms such as Convolutional Neural Networks (CNNs) and different deep Generative Adversarial Networks (GANs) to create models that can discern dehazed representations by learning intricate parameters like transmission maps, atmospheric light conditions, or their combined effects. Furthermore, some learning-based approaches facilitate the direct generation of dehazed outputs from hazy inputs by assimilating the non-linear mapping between the two. This review study delves into a comprehensive examination of datasets utilized within learning-based dehazing methodologies, elucidating their characteristics and relevance. Furthermore, a systematic exposition of the merits and demerits inherent in distinct dehazing techniques is presented. The discourse culminates in the synthesis of the primary quandaries and challenges confronted by prevailing dehazing techniques. The assessment of dehazed image and frame quality is facilitated through the application of rigorous evaluation metrics, a discussion of which is incorporated. To provide empiri
Delay-sensitive applications are becoming more and more in demand as a result of the development of information systems and the expansion of communication in cloud computing technologies. Some of these requests will b...
详细信息
Transient stability analysis (TSA) of synchronous generators (SGs) is essential for reliable operation of electrical systems. Conventionally, the equal area criterion (EAC) is used to assess the transient stability of...
详细信息
In recent years, face detection has emerged as a prominent research field within computer Vision (CV) and Deep Learning. Detecting faces in images and video sequences remains a challenging task due to various factors ...
详细信息
In recent years, face detection has emerged as a prominent research field within computer Vision (CV) and Deep Learning. Detecting faces in images and video sequences remains a challenging task due to various factors such as pose variation, varying illumination, occlusion, and scale differences. Despite the development of numerous face detection algorithms in deep learning, the Viola-Jones algorithm, with its simple yet effective approach, continues to be widely used in real-time camera applications. The conventional Viola-Jones algorithm employs AdaBoost for classifying faces in images and videos. The challenge lies in working with cluttered real-time facial images. AdaBoost needs to search through all possible thresholds for all samples to find the minimum training error when receiving features from Haar-like detectors. Therefore, this exhaustive search consumes significant time to discover the best threshold values and optimize feature selection to build an efficient classifier for face detection. In this paper, we propose enhancing the conventional Viola-Jones algorithm by incorporating Particle Swarm Optimization (PSO) to improve its predictive accuracy, particularly in complex face images. We leverage PSO in two key areas within the Viola-Jones framework. Firstly, PSO is employed to dynamically select optimal threshold values for feature selection, thereby improving computational efficiency. Secondly, we adapt the feature selection process using AdaBoost within the Viola-Jones algorithm, integrating PSO to identify the most discriminative features for constructing a robust classifier. Our approach significantly reduces the feature selection process time and search complexity compared to the traditional algorithm, particularly in challenging environments. We evaluated our proposed method on a comprehensive face detection benchmark dataset, achieving impressive results, including an average true positive rate of 98.73% and a 2.1% higher average prediction accura
Machine learning with optical neural networks has featured unique advantages of the information processing including high speed,ultrawide bandwidths and low energy consumption because the optical dimensions(time,space...
详细信息
Machine learning with optical neural networks has featured unique advantages of the information processing including high speed,ultrawide bandwidths and low energy consumption because the optical dimensions(time,space,wavelength,and polarization)could be utilized to increase the degree of ***,due to the lack of the capability to extract the information features in the orbital angular momentum(OAM)domain,the theoretically unlimited OAM states have never been exploited to represent the signal of the input/output nodes in the neural network ***,we demonstrate OAM-mediated machine learning with an all-optical convolutional neural network(CNN)based on Laguerre-Gaussian(LG)beam modes with diverse diffraction *** proposed CNN architecture is composed of a trainable OAM mode-dispersion impulse as a convolutional kernel for feature extraction,and deep-learning diffractive layers as a *** resultant OAM mode-dispersion selectivity can be applied in information mode-feature encoding,leading to an accuracy as high as 97.2%for MNIST database through detecting the energy weighting coefficients of the encoded OAM modes,as well as a resistance to eavesdropping in point-to-point free-space ***,through extending the target encoded modes into multiplexed OAM states,we realize all-optical dimension reduction for anomaly detection with an accuracy of 85%.Our work provides a deep insight to the mechanism of machine learning with spatial modes basis,which can be further utilized to improve the performances of various machine-vision tasks by constructing the unsupervised learning-based auto-encoder.
The recent development of channel technology has promised to reduce the transaction verification time in blockchain *** transactions are transmitted through the channels created by nodes,the nodes need to cooperate wi...
详细信息
The recent development of channel technology has promised to reduce the transaction verification time in blockchain *** transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each *** one party refuses to do so,the channel is unstable.A stable channel is thus *** nodes may show uncooperative behavior,they may have a negative impact on the stability of such *** order to address this issue,this work proposes a dynamic evolutionary game model based on node *** model considers various defense strategies'cost and attack success ratio under *** can dynamically adjust their strategies according to the behavior of attackers to achieve their effective *** equilibrium stability of the proposed model can be *** proposed model can be applied to general channel *** is compared with two state-of-the-art blockchain channels:Lightning network and Spirit *** experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable *** its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.
暂无评论