Off-axis digital holography plays a crucial role in high-precision three-dimensional imaging. However, high-resolution phase images are often affected by the limited pixel size of the sensor. To address this issue, th...
详细信息
Roads are an important part of transporting goods and products from one place to another. In developing countries, the main challenge is to maintain road conditions regularly. Roads can deteriorate from time to time. ...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
This paper presents a dual-band implantable antenna with coaxial probe feeding for wireless biotelemetry applications. The antenna features spiral patches, resulting in a compact size of 27 × 14 × 1.6 mm3. I...
详细信息
The advent of the Internet of Things (IoT) has revolutionized connectivity by interconnecting a vast array of devices, underscoring the critical need for robust data security, particularly at the Physical Layer Securi...
详细信息
The advent of the Internet of Things (IoT) has revolutionized connectivity by interconnecting a vast array of devices, underscoring the critical need for robust data security, particularly at the Physical Layer Security (PLS). Ensuring data confidentiality and integrity during wireless communications poses a primary challenge in IoT environments. Additionally, within the constrained frequency bands available, Cognitive Radio Networks (CRNs) has emerged as an urgent necessity to optimize spectrum utilization. This technology enables intelligent management of radio frequencies, enhancing network efficiency and adaptability to dynamic environmental changes. In this research, we focus on examining the PLS for the primary channel within the underlying CRNs. Our proposed model involves a primary source-destination pair and a secondary transmitter-receiver pair sharing the same frequency band simultaneously. In the presence of a common eavesdropper, the primary concern lies in securing the primary link communication. The secondary user (SU) acts as cooperative jamming, strategically allocating a portion of its transmission power to transmit artificial interference, thus confusing the eavesdropper and protecting the primary user's (PU) communication. The transmit power of the SU is regulated by the maximum interference power tolerated by the primary network's receiver. To evaluate the effectiveness of our proposed protocol, we develop closed-form mathematical expressions for intercept probability ((Formula presented.)) and outage probability (OP) along the primary communication link. Additionally, we derive mathematical expressions for OP along the secondary communications network. Furthermore, we investigate the impact of transmit power allocation on intercept and outage probabilities across various links. Through both simulation and theoretical analysis, our protocol aims to enhance protection and outage efficiency for the primary link while ensuring appropriate secondary
Hybrid switch reluctance motors are the family of switch reluctance motors (SRMs) that attenuate the magnetic saturation and increase the air gap magnetic flux by exploiting permanent magnets. The permanent magnet aux...
详细信息
As a frontier technology,holography has important research values in fields such as bio-micrographic imaging,light feld modulation and data ***,the real-time acquisition of 3D scenes and high-fidelity reconstruction t...
详细信息
As a frontier technology,holography has important research values in fields such as bio-micrographic imaging,light feld modulation and data ***,the real-time acquisition of 3D scenes and high-fidelity reconstruction technology has not yet made a breakthrough,which has seriously hindered the development of ***,a novel holographic camera is proposed to solve the above inherent problems *** proposed holographic camera consists of the acquisition end and the calculation *** the acquisition end of the holographic camera,specially configured liquid materials and liquid lens structure based on voice-coil motor-driving are used to produce the liquid camera,so that the liquid camera can quickly capture the focus stack of the real 3D scene within 15 *** the calculation end,a new structured focus stack network(FS-Net)is designed for hologram *** training the FS-Net with the focus stack renderer and learnable Zernike phase,it enables hologram calculation within 13 *** the first device to achieve real-time incoherent acquisition and high-fidelity holographic reconstruction of a real 3D scene,our proposed holographic camera breaks technical bottlenecks of difficulty in acquiring the real 3D scene,low quality of the holographic reconstructed image,and incorrect defocus *** experimental results demonstrate the effectiveness of our holographic camera in the acquisition of focal plane information and hologram calculation of the real 3D *** proposed holographic camera opens up a new way for the application of holography in fields such as 3D display,light field modulation,and 3D measurement.
By integrating smart grid technology with home energy management systems, households can monitor and optimise their energy consumption. This allows for more efficient use of energy resources, reducing waste and loweri...
详细信息
Mobile devices play a key role in developing mental health focused applications for individuals. The presented research proposes using mobile devices to limit the occurrence of depression in disabled individuals. It p...
详细信息
Purpose: Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by sol...
详细信息
Purpose: Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by solving the inverse problem on the measured displacement field from the ultrasound images. The limitations of traditional inverse problem techniques in US elastography are either slow and computationally intensive (iterative techniques) or sensitive to measurement noise and dependent on full displacement field data (direct techniques). Thus, we develop and validate a deep learning approach for solving the inverse problem in US elastography. This involves recovering the spatial modulus distribution of the elastic modulus from one component of the US-measured displacement field. Approach: We present a U-Net-based deep learning neural network to address the inverse problem in ultrasound elastography. This approach diverges from traditional methods by focusing on a data-driven model. The neural network is trained using data generated from a forward finite element model. This simulation incorporates variations in the displacement fields that correspond to the elastic modulus distribution, allowing the network to learn without the need for extensive real-world measurement data. The inverse problem of predicting the modulus spatial distribution from ultrasound-measured displacement fields is addressed using a trained neural network. The neural network is evaluated with mean squared error (MSE) and mean absolute percentage error (MAPE) metrics. To extend our model to practical purposes, we conduct phantom experiments and also apply our model to clinical data. Results: Our simulated results indicate that our deep learning (DL) model effectively reconstructs modulus distributions, as evidenced by low MSE and MAPE evaluation metrics. We obtain a mean MAPE of 0.32% for a hard inclusion and 0.39% for a soft inclusion. Similarly, in our phantom studies, the predicted mo
暂无评论