咨询与建议

限定检索结果

文献类型

  • 241 篇 期刊文献
  • 54 篇 会议
  • 2 册 图书

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 121 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 27 篇 生物工程
    • 25 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 14 篇 安全科学与工程
    • 13 篇 化学工程与技术
    • 12 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 173 篇 理学
    • 132 篇 数学
    • 93 篇 统计学(可授理学、...
    • 32 篇 生物学
    • 28 篇 系统科学
    • 21 篇 物理学
    • 15 篇 化学
    • 5 篇 地球物理学
  • 30 篇 管理学
    • 14 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 25 篇 machine learning
  • 8 篇 forecasting
  • 5 篇 optimization
  • 5 篇 embeddings
  • 5 篇 stochastic syste...
  • 4 篇 surveys
  • 4 篇 deep learning
  • 4 篇 generative adver...
  • 4 篇 matrix algebra
  • 4 篇 gaussian distrib...
  • 3 篇 causal discovery
  • 3 篇 prediction model...
  • 3 篇 probability dist...
  • 3 篇 statistics
  • 3 篇 gradient methods
  • 3 篇 aspect ratio
  • 3 篇 artificial intel...
  • 3 篇 banach spaces
  • 3 篇 random processes
  • 3 篇 calibration

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 18 篇 department of st...
  • 16 篇 machine learning...
  • 16 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 vector institute...
  • 14 篇 department of el...
  • 12 篇 departments of c...
  • 11 篇 machine learning...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 9 篇 department of st...
  • 8 篇 machine learning...
  • 8 篇 department of st...
  • 8 篇 department of st...
  • 7 篇 machine learning...
  • 7 篇 department of st...
  • 7 篇 department of st...
  • 6 篇 university kasse...

作者

  • 72 篇 ramdas aaditya
  • 19 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 12 篇 von lilienfeld o...
  • 10 篇 ravikumar pradee...
  • 10 篇 wang hongjian
  • 9 篇 shekhar shubhans...
  • 9 篇 aaditya ramdas
  • 9 篇 tibshirani ryan ...
  • 9 篇 xu ziyu
  • 9 篇 von rudorff guid...
  • 8 篇 sivaraman balakr...
  • 7 篇 lipton zachary c...
  • 7 篇 wang ruodu

语言

  • 258 篇 英文
  • 39 篇 其他
检索条件"机构=Departments of Statistics & Data Science and of Machine Learning"
297 条 记 录,以下是1-10 订阅
排序:
Reducing sequential change detection to sequential estimation  41
Reducing sequential change detection to sequential estimatio...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Shekhar, Shubhanshu Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We consider the problem of sequential change detection under minimal assumptions on the distribution generating the stream of observations. Formally, our goal is to design a scheme for detecting any changes in a param...
来源: 评论
Foundations of Testing for Finite-Sample Causal Discovery  41
Foundations of Testing for Finite-Sample Causal Discovery
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Yan, Tom Xu, Ziyu Lipton, Zachary Machine Learning Department Carnegie Mellon University Pittsburgh United States Department of Statistics and Data Science Carnegie Mellon University Pittsburgh United States
Discovery of causal relationships is a fundamental goal of science and vital for sound decision making. As such, there has been considerable interest in causal discovery methods with provable guarantees. Existing work... 详细信息
来源: 评论
Functional linear non-Gaussian acyclic model for causal discovery
收藏 引用
Behaviormetrika 2024年 第2期51卷 567-588页
作者: Yang, Tian-Le Lee, Kuang-Yao Zhang, Kun Suzuki, Joe Graduate School of Engineering Science Osaka University Osaka Japan Department of Statistics Operations and Data Science Temple University Philadelphia United States Machine Learning Department Carnegie Mellon University Pittsburgh United States Machine Learning Department MBZUAI Abu Dhabi United Arab Emirates
In causal discovery, non-Gaussianity has been used to characterize the complete configuration of a linear non-Gaussian acyclic model (LiNGAM), encompassing both the causal ordering of variables and their respective co... 详细信息
来源: 评论
Optimal bounds for p sensitivity sampling via 2 augmentation  41
Optimal bounds for p sensitivity sampling via 2 augmentation
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop... 详细信息
来源: 评论
Turnstile p leverage score sampling with applications  41
Turnstile p leverage score sampling with applications
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple ... 详细信息
来源: 评论
An Efficient Doubly-Robust Test for the Kernel Treatment Effect  37
An Efficient Doubly-Robust Test for the Kernel Treatment Eff...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Martinez-Taboada, Diego Ramdas, Aaditya Kennedy, Edward H. Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
The average treatment effect, which is the difference in expectation of the counterfactuals, is probably the most popular target effect in causal inference with binary treatments. However, treatments may have effects ...
来源: 评论
Convergence Analysis of Probability Flow ODE for Score-Based Generative Models
收藏 引用
IEEE Transactions on Information Theory 2025年 第6期71卷 4581-4601页
作者: Huang, Daniel Zhengyu Huang, Jiaoyang Lin, Zhengjiang Peking University Beijing International Center for Mathematical Research Center for Machine Learning Research Beijing100871 China University of Pennsylvania Department of Statistics and Data Science PhiladelphiaPA19104 United States Massachusetts Institute of Technology Department of Mathematics CambridgeMA02139 United States
Score-based generative models have emerged as a powerful approach for sampling high-dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings remain relatively underdeveloped.... 详细信息
来源: 评论
Game-Theoretic statistics and Safe Anytime-Valid Inference
收藏 引用
Statistical science 2023年 第4期38卷 576-597页
作者: Ramdas, Aaditya Grünwald, Peter Vovk, Vladimir Shafer, Glenn Statistics and Data Science Machine Learning Carnegie Mellon University Pittsburgh 15213 PA United States Machine Learning Group Centrum Wiskunde Informatica Amsterdam Netherlands Computer Science Royal Holloway University of London United Kingdom Rutgers University Piscataway 08854-8019 NJ United States
Safe anytime-valid inference (SAVI) provides measures of statistical evidence and certainty—e-processes for testing and confidence sequences for estimation—that remain valid at all stopping times, accommodating cont... 详细信息
来源: 评论
Reducing sequential change detection to sequential estimation  24
Reducing sequential change detection to sequential estimatio...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Shubhanshu Shekhar Aaditya Ramdas Department of Statistics and Data Science Carnegie Mellon University Department of Statistics and Data Science and Machine Learning Department Carnegie Mellon University
We consider the problem of sequential change detection under minimal assumptions on the distribution generating the stream of observations. Formally, our goal is to design a scheme for detecting any changes in a param...
来源: 评论
More powerful multiple testing under dependence via randomization
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Ziyu Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Departments of Statistics and Data Science and Machine Learning Carnegie Mellon University United States
We show that two procedures for false discovery rate (FDR) control — the Benjamini-Yekutieli procedure for dependent p-values, and the e-Benjamini-Hochberg procedure for dependent e-values — can both be made more po... 详细信息
来源: 评论