咨询与建议

限定检索结果

文献类型

  • 241 篇 期刊文献
  • 54 篇 会议
  • 2 册 图书

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 121 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 27 篇 生物工程
    • 25 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 14 篇 安全科学与工程
    • 13 篇 化学工程与技术
    • 12 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 173 篇 理学
    • 132 篇 数学
    • 93 篇 统计学(可授理学、...
    • 32 篇 生物学
    • 28 篇 系统科学
    • 21 篇 物理学
    • 15 篇 化学
    • 5 篇 地球物理学
  • 30 篇 管理学
    • 14 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 25 篇 machine learning
  • 8 篇 forecasting
  • 5 篇 optimization
  • 5 篇 embeddings
  • 5 篇 stochastic syste...
  • 4 篇 surveys
  • 4 篇 deep learning
  • 4 篇 generative adver...
  • 4 篇 matrix algebra
  • 4 篇 gaussian distrib...
  • 3 篇 causal discovery
  • 3 篇 prediction model...
  • 3 篇 probability dist...
  • 3 篇 statistics
  • 3 篇 gradient methods
  • 3 篇 aspect ratio
  • 3 篇 artificial intel...
  • 3 篇 banach spaces
  • 3 篇 random processes
  • 3 篇 calibration

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 18 篇 department of st...
  • 16 篇 machine learning...
  • 16 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 vector institute...
  • 14 篇 department of el...
  • 12 篇 departments of c...
  • 11 篇 machine learning...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 9 篇 department of st...
  • 8 篇 machine learning...
  • 8 篇 department of st...
  • 8 篇 department of st...
  • 7 篇 machine learning...
  • 7 篇 department of st...
  • 7 篇 department of st...
  • 6 篇 university kasse...

作者

  • 72 篇 ramdas aaditya
  • 19 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 12 篇 von lilienfeld o...
  • 10 篇 ravikumar pradee...
  • 10 篇 wang hongjian
  • 9 篇 shekhar shubhans...
  • 9 篇 aaditya ramdas
  • 9 篇 tibshirani ryan ...
  • 9 篇 xu ziyu
  • 9 篇 von rudorff guid...
  • 8 篇 sivaraman balakr...
  • 7 篇 lipton zachary c...
  • 7 篇 wang ruodu

语言

  • 258 篇 英文
  • 39 篇 其他
检索条件"机构=Departments of Statistics & Data Science and of Machine Learning"
297 条 记 录,以下是11-20 订阅
排序:
Online multiple testing with e-values
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Ziyu Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Departments of Statistics and Data Science and Machine Learning Carnegie Mellon University United States
A scientist tests a continuous stream of hypotheses over time in the course of her investigation — she does not test a predetermined, fixed number of hypotheses. The scientist wishes to make as many discoveries as po... 详细信息
来源: 评论
Asymptotic and compound e-values: multiple testing and empirical Bayes
arXiv
收藏 引用
arXiv 2024年
作者: Ignatiadis, Nikolaos Wang, Ruodu Ramdas, Aaditya Department of Statistics and Data Science Institute University of Chicago United States Department of Statistics and Actuarial Science University of Waterloo Canada Departments of Statistics & Machine Learning Carnegie Mellon University United States
We explicitly define the notions of (exact, approximate or asymptotic) compound p-values and e-values, which have been implicitly presented and extensively used in the recent multiple testing literature. While it is k... 详细信息
来源: 评论
Optimal Ridge Regularization for Out-of-Distribution Prediction  41
Optimal Ridge Regularization for Out-of-Distribution Predict...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Patil, Pratik Du, Jin-Hong Tibshirani, Ryan J. Department of Statistics University of California BerkeleyCA94720 United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
We study the behavior of optimal ridge regularization and optimal ridge risk for out-of-distribution prediction, where the test distribution deviates arbitrarily from the train distribution. We establish general condi... 详细信息
来源: 评论
On Fake News Detection with LLM Enhanced Semantics Mining
On Fake News Detection with LLM Enhanced Semantics Mining
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Ma, Xiaoxiao Zhang, Yuchen Ding, Kaize Yang, Jian Wu, Jia Fan, Hao School of Computing Macquarie University Sydney Australia Amazon Machine Learning Sydney Australia School of Information Management Wuhan University Hubei China Department of Statistics and Data Science Northwestern University IL United States
Large language models (LLMs) have emerged as valuable tools for enhancing textual features in various text-related tasks. Despite their superiority in capturing the lexical semantics between tokens for text analysis, ... 详细信息
来源: 评论
Stability Bounds for Smooth Optimal Transport Maps and their Statistical Implications
arXiv
收藏 引用
arXiv 2025年
作者: Balakrishnan, Sivaraman Manole, Tudor Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States Statistics and Data Science Center Massachusetts Institute of Technology United States
We study estimators of the optimal transport (OT) map between two probability distributions. We focus on plugin estimators derived from the OT map between estimates of the underlying distributions. We develop novel st... 详细信息
来源: 评论
Sequential Kernelized Stein Discrepancy
arXiv
收藏 引用
arXiv 2024年
作者: Martinez-Taboada, Diego Ramdas, Aaditya Department of Statistics & Data Science Carnegie Mellon University United States Department of Statistics & Data Science Machine Learning Department Carnegie Mellon University United States
We present a sequential version of the kernelized Stein discrepancy goodness-of-fit test, which allows for conducting goodness-of-fit tests for unnormalized densities that are continuously monitored and adaptively sto...
来源: 评论
Identifying General Mechanism Shifts in Linear Causal Representations  38
Identifying General Mechanism Shifts in Linear Causal Repres...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Chen, Tianyu Bello, Kevin Locatello, Francesco Aragam, Bryon Ravikumar, Pradeep Department of Statistics and Data Sciences University of Texas Austin United States Booth School of Business University of Chicago United States Machine Learning Department Carnegie Mellon University United States Institute of Science and Technology Austria Austria
We consider the linear causal representation learning setting where we observe a linear mixing of d unknown latent factors, which follow a linear structural causal model. Recent work has shown that it is possible to r...
来源: 评论
TRACKING THE RISK OF A DEPLOYED MODEL AND DETECTING HARMFUL DISTRIBUTION SHIFTS  10
TRACKING THE RISK OF A DEPLOYED MODEL AND DETECTING HARMFUL ...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Podkopaev, Aleksandr Ramdas, Aaditya Department of Statistics & Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
When deployed in the real world, machine learning models inevitably encounter changes in the data distribution, and certain-but not all-distribution shifts could result in significant performance degradation. In pract...
来源: 评论
Empirical Bernstein in smooth Banach spaces
arXiv
收藏 引用
arXiv 2024年
作者: Martinez-Taboada, Diego Ramdas, Aaditya Department of Statistics & Data Science United States Machine Learning Department Carnegie Mellon University United States
Existing concentration bounds for bounded vector-valued random variables include extensions of the scalar Hoeffding and Bernstein inequalities. While the latter is typically tighter, it requires knowing a bound on the... 详细信息
来源: 评论
Hypothesis testing with e-values
arXiv
收藏 引用
arXiv 2024年
作者: Ramdas, Aaditya Wang, Ruodu Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States Department of Statistics and Actuarial Science University of Waterloo Canada
This book is written to offer a humble, but unified, treatment of e-values inhypothesis testing. The book is organized into three parts: FundamentalConcepts, Core Ideas, and Advanced Topics. The first part includes th...
来源: 评论