咨询与建议

限定检索结果

文献类型

  • 241 篇 期刊文献
  • 54 篇 会议
  • 2 册 图书

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 121 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 27 篇 生物工程
    • 25 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 14 篇 安全科学与工程
    • 13 篇 化学工程与技术
    • 12 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 173 篇 理学
    • 132 篇 数学
    • 93 篇 统计学(可授理学、...
    • 32 篇 生物学
    • 28 篇 系统科学
    • 21 篇 物理学
    • 15 篇 化学
    • 5 篇 地球物理学
  • 30 篇 管理学
    • 14 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 25 篇 machine learning
  • 8 篇 forecasting
  • 5 篇 optimization
  • 5 篇 embeddings
  • 5 篇 stochastic syste...
  • 4 篇 surveys
  • 4 篇 deep learning
  • 4 篇 generative adver...
  • 4 篇 matrix algebra
  • 4 篇 gaussian distrib...
  • 3 篇 causal discovery
  • 3 篇 prediction model...
  • 3 篇 probability dist...
  • 3 篇 statistics
  • 3 篇 gradient methods
  • 3 篇 aspect ratio
  • 3 篇 artificial intel...
  • 3 篇 banach spaces
  • 3 篇 random processes
  • 3 篇 calibration

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 18 篇 department of st...
  • 16 篇 machine learning...
  • 16 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 vector institute...
  • 14 篇 department of el...
  • 12 篇 departments of c...
  • 11 篇 machine learning...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 9 篇 department of st...
  • 8 篇 machine learning...
  • 8 篇 department of st...
  • 8 篇 department of st...
  • 7 篇 machine learning...
  • 7 篇 department of st...
  • 7 篇 department of st...
  • 6 篇 university kasse...

作者

  • 72 篇 ramdas aaditya
  • 19 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 12 篇 von lilienfeld o...
  • 10 篇 ravikumar pradee...
  • 10 篇 wang hongjian
  • 9 篇 shekhar shubhans...
  • 9 篇 aaditya ramdas
  • 9 篇 tibshirani ryan ...
  • 9 篇 xu ziyu
  • 9 篇 von rudorff guid...
  • 8 篇 sivaraman balakr...
  • 7 篇 lipton zachary c...
  • 7 篇 wang ruodu

语言

  • 258 篇 英文
  • 39 篇 其他
检索条件"机构=Departments of Statistics & Data Science and of Machine Learning"
297 条 记 录,以下是21-30 订阅
排序:
Statistical guarantees for local spectral clustering on random neighborhood graphs
收藏 引用
Journal of machine learning Research 2021年 第1期22卷 1-71页
作者: Green, Alden Balakrishnan, Sivaraman Tibshirani, Ryan J. Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
We study the Personalized PageRank (PPR) algorithm, a local spectral method for clustering, which extracts clusters using locally-biased random walks around a given seed node. In contrast to previous work, we adopt a ... 详细信息
来源: 评论
Combining Evidence Across Filtrations
arXiv
收藏 引用
arXiv 2024年
作者: Choe, Yo Joong Ramdas, Aaditya Data Science Institute University of Chicago United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
In sequential anytime-valid inference, any admissible procedure must be based on e-processes: generalizations of test martingales that quantify the accumulated evidence against a composite null hypothesis at any stopp... 详细信息
来源: 评论
A permutation-free kernel independence test
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 17707-17774页
作者: Shubhanshu Shekhar Ilmun Kim Aaditya Ramdas Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Department of Applied Statistics Yonsei University Seodaemun-gu Seoul Republic of Korea Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University Pittsburgh PA
In nonparametric independence testing, we observe i.i.d. data {(Xi, Yi)}ni=1, where X ∈ Χ, Y ∈ Y lie in any general spaces, and we wish to test the null that X is independent of Y. Modern test statistics such as th... 详细信息
来源: 评论
Bagging in overparameterized learning: risk characterization and risk monotonization
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 15081-15193页
作者: Pratik Patil Jin-Hong Du Arun Kumar Kuchibhotla Department of Statistics University of California Berkeley Berkeley CA Department of Statistics and Data Science & Machine Learning Department Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA
Bagging is a commonly used ensemble technique in statistics and machine learning to improve the performance of prediction procedures. In this paper, we study the prediction risk of variants of bagged predictors under ... 详细信息
来源: 评论
On the Origins of Linear Representations in Large Language Models  41
On the Origins of Linear Representations in Large Language M...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Jiang, Yibo Rajendran, Goutham Ravikumar, Pradeep Aragam, Bryon Veitch, Victor Department of Computer Science University of Chicago United States Machine Learning Department Carnegie Mellon University United States Booth School of Business University of Chicago United States Department of Statistics University of Chicago United States Data Science Institute University of Chicago United States
Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To t...
来源: 评论
Optimal ridge regularization for out-of-distribution prediction  24
Optimal ridge regularization for out-of-distribution predict...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Pratik Patil Jin-Hong Du Ryan J. Tibshirani Department of Statistics University of California Berkeley CA Department of Statistics and Data Science and Machine Learning Department Carnegie Mellon University Pittsburgh PA
We study the behavior of optimal ridge regularization and optimal ridge risk for out-of-distribution prediction, where the test distribution deviates arbitrarily from the train distribution. We establish general condi...
来源: 评论
Foundations of testing for finite-sample causal discovery  24
Foundations of testing for finite-sample causal discovery
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Tom Yan Ziyu Xu Zachary Lipton Machine Learning Department Carnegie Mellon University Pittsburgh Department of Statistics and Data Science Carnegie Mellon University Pittsburgh
Discovery of causal relationships is a fundamental goal of science and vital for sound decision making. As such, there has been considerable interest in causal discovery methods with provable guarantees. Existing work...
来源: 评论
Anytime-valid FDR control with the stopped e-BH procedure
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Hongjian Dandapanthula, Sanjit Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
The recent e-Benjamini-Hochberg (e-BH) procedure for multiple hypothesis testing is known to control the false discovery rate (FDR) under arbitrary dependence between the input e-values. This paper points out an impor... 详细信息
来源: 评论
Active multiple testing with proxy p-values and e-values
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ziyu Wang, Catherine Wasserman, Larry Roeder, Kathryn Ramdas, Aaditya Department of Statistics and Data Science United States Machine Learning Department Germany Computational Biology Department Carnegie Mellon University United States
Researchers often lack the resources to test every hypothesis of interest directly or compute test statistics comprehensively, but often possess auxiliary data from which we can compute an estimate of the experimental...
来源: 评论
An efficient doubly-robust test for the kernel treatment effect  23
An efficient doubly-robust test for the kernel treatment eff...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Diego Martinez-Taboada Aaditya Ramdas Edward H. Kennedy Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University Pittsburgh PA
The average treatment effect, which is the difference in expectation of the counter-factuals, is probably the most popular target effect in causal inference with binary treatments. However, treatments may have effects...
来源: 评论