咨询与建议

限定检索结果

文献类型

  • 241 篇 期刊文献
  • 54 篇 会议
  • 2 册 图书

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 121 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 27 篇 生物工程
    • 25 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 14 篇 安全科学与工程
    • 13 篇 化学工程与技术
    • 12 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 173 篇 理学
    • 132 篇 数学
    • 93 篇 统计学(可授理学、...
    • 32 篇 生物学
    • 28 篇 系统科学
    • 21 篇 物理学
    • 15 篇 化学
    • 5 篇 地球物理学
  • 30 篇 管理学
    • 14 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 25 篇 machine learning
  • 8 篇 forecasting
  • 5 篇 optimization
  • 5 篇 embeddings
  • 5 篇 stochastic syste...
  • 4 篇 surveys
  • 4 篇 deep learning
  • 4 篇 generative adver...
  • 4 篇 matrix algebra
  • 4 篇 gaussian distrib...
  • 3 篇 causal discovery
  • 3 篇 prediction model...
  • 3 篇 probability dist...
  • 3 篇 statistics
  • 3 篇 gradient methods
  • 3 篇 aspect ratio
  • 3 篇 artificial intel...
  • 3 篇 banach spaces
  • 3 篇 random processes
  • 3 篇 calibration

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 18 篇 department of st...
  • 16 篇 machine learning...
  • 16 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 vector institute...
  • 14 篇 department of el...
  • 12 篇 departments of c...
  • 11 篇 machine learning...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 9 篇 department of st...
  • 8 篇 machine learning...
  • 8 篇 department of st...
  • 8 篇 department of st...
  • 7 篇 machine learning...
  • 7 篇 department of st...
  • 7 篇 department of st...
  • 6 篇 university kasse...

作者

  • 72 篇 ramdas aaditya
  • 19 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 12 篇 von lilienfeld o...
  • 10 篇 ravikumar pradee...
  • 10 篇 wang hongjian
  • 9 篇 shekhar shubhans...
  • 9 篇 aaditya ramdas
  • 9 篇 tibshirani ryan ...
  • 9 篇 xu ziyu
  • 9 篇 von rudorff guid...
  • 8 篇 sivaraman balakr...
  • 7 篇 lipton zachary c...
  • 7 篇 wang ruodu

语言

  • 258 篇 英文
  • 39 篇 其他
检索条件"机构=Departments of Statistics & Data Science and of Machine Learning"
297 条 记 录,以下是31-40 订阅
排序:
Sharp Matrix Empirical Bernstein Inequalities
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We present two sharp empirical Bernstein inequalities for symmetric random matrices with bounded eigenvalues. By sharp, we mean that both inequalities adapt to the unknown variance in a tight manner: the deviation cap... 详细信息
来源: 评论
Graph fission and cross-validation
arXiv
收藏 引用
arXiv 2024年
作者: Leiner, James Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We introduce a technique called graph fission which takes in a graph which potentially contains only one observation per node (whose distribution lies in a known class) and produces two (or more) independent graphs wi... 详细信息
来源: 评论
Positive Semidefinite Matrix Supermartingales
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We explore the asymptotic convergence and nonasymptotic maximal inequalities of supermartingales and backward submartingales in the space of positive semidefinite matrices. These are natural matrix analogs of scalar n... 详细信息
来源: 评论
Testing by Betting while Borrowing and Bargaining
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Testing by betting has been a cornerstone of the game-theoretic statistics literature. In this framework, a betting score (or more generally an e-process), as opposed to a traditional p-value, is used to quantify the ... 详细信息
来源: 评论
UNDERSTANDING THE GENERALIZATION OF ADAM IN learning NEURAL NETWORKS WITH PROPER REGULARIZATION  11
UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL ...
收藏 引用
11th International Conference on learning Representations, ICLR 2023
作者: Zou, Difan Cao, Yuan Li, Yuanzhi Gu, Quanquan Department of Computer Science Institute of Data Science The University of Hong Kong Hong Kong Department of Statistics & Actuarial Science The University of Hong Kong Hong Kong Machine Learning Department Carnegie Mellon University United States Department of Computer Science University of California Los Angeles United States
Adaptive gradient methods such as Adam have gained increasing popularity in deep learning optimization. However, it has been observed in many deep learning applications such as image classification, Adam can converge ... 详细信息
来源: 评论
A unified recipe for deriving (time-uniform) PAC-Bayes bounds
arXiv
收藏 引用
arXiv 2023年
作者: Chugg, Ben Wang, Hongjian Ramdas, Aaditya Machine Learning Department United States Department of Statistics and Data Science Carnegie Mellon University United States
We present a unified framework for deriving PAC-Bayesian generalization bounds. Unlike most previous literature on this topic, our bounds are anytime-valid (i.e., time-uniform), meaning that they hold at all stopping ... 详细信息
来源: 评论
Time-Uniform Confidence Spheres for Means of Random Vectors
arXiv
收藏 引用
arXiv 2023年
作者: Chugg, Ben Wang, Hongjian Ramdas, Aaditya Machine Learning Department United States Department of Statistics and Data Science Carnegie Mellon University United States
We study sequential mean estimation in d. In particular, we derive time-uniform confidence spheres—confidence sphere sequences (CSSs)—which contain the mean of random vectors with high probability simultaneously acr... 详细信息
来源: 评论
CONFORMALIZED INTERACTIVE IMITATION learning: HANDLING EXPERT SHIFT & INTERMITTENT FEEDBACK
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Michelle Simmons, Reid Admoni, Henny Ramdas, Aaditya Bajcsy, Andrea Robotics Institute School of Computer Science Carnegie Mellon University United States Departments of Statistics and Machine Learning Carnegie Mellon University United States
In interactive imitation learning (IL), uncertainty quantification offers a way for the learner (i.e. robot) to contend with distribution shifts encountered during deployment by actively seeking additional feedback fr... 详细信息
来源: 评论
Generalized equivalences between subsampling and ridge regularization  23
Generalized equivalences between subsampling and ridge regul...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Pratik Patil Jin-Hong Du Department of Statistics University of California Berkeley CA Department of Statistics and Data Science & Machine Learning Department Carnegie Mellon University Pittsburgh PA
We establish precise structural and risk equivalences between subsampling and ridge regularization for ensemble ridge estimators. Specifically, we prove that linear and quadratic functionals of subsample ridge estimat...
来源: 评论
Robust Universal Inference
arXiv
收藏 引用
arXiv 2023年
作者: Park, Beomjo Balakrishnan, Sivaraman Wasserman, Larry Department of Statistics & Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
In statistical inference, it is rarely realistic that the hypothesized statistical model is well-specified, and consequently it is important to understand the effects of misspecification on inferential procedures. Whe... 详细信息
来源: 评论