咨询与建议

限定检索结果

文献类型

  • 241 篇 期刊文献
  • 54 篇 会议
  • 2 册 图书

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 121 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 27 篇 生物工程
    • 25 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 14 篇 安全科学与工程
    • 13 篇 化学工程与技术
    • 12 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 173 篇 理学
    • 132 篇 数学
    • 93 篇 统计学(可授理学、...
    • 32 篇 生物学
    • 28 篇 系统科学
    • 21 篇 物理学
    • 15 篇 化学
    • 5 篇 地球物理学
  • 30 篇 管理学
    • 14 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 25 篇 machine learning
  • 8 篇 forecasting
  • 5 篇 optimization
  • 5 篇 embeddings
  • 5 篇 stochastic syste...
  • 4 篇 surveys
  • 4 篇 deep learning
  • 4 篇 generative adver...
  • 4 篇 matrix algebra
  • 4 篇 gaussian distrib...
  • 3 篇 causal discovery
  • 3 篇 prediction model...
  • 3 篇 probability dist...
  • 3 篇 statistics
  • 3 篇 gradient methods
  • 3 篇 aspect ratio
  • 3 篇 artificial intel...
  • 3 篇 banach spaces
  • 3 篇 random processes
  • 3 篇 calibration

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 18 篇 department of st...
  • 16 篇 machine learning...
  • 16 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 vector institute...
  • 14 篇 department of el...
  • 12 篇 departments of c...
  • 11 篇 machine learning...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 9 篇 department of st...
  • 8 篇 machine learning...
  • 8 篇 department of st...
  • 8 篇 department of st...
  • 7 篇 machine learning...
  • 7 篇 department of st...
  • 7 篇 department of st...
  • 6 篇 university kasse...

作者

  • 72 篇 ramdas aaditya
  • 19 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 12 篇 von lilienfeld o...
  • 10 篇 ravikumar pradee...
  • 10 篇 wang hongjian
  • 9 篇 shekhar shubhans...
  • 9 篇 aaditya ramdas
  • 9 篇 tibshirani ryan ...
  • 9 篇 xu ziyu
  • 9 篇 von rudorff guid...
  • 8 篇 sivaraman balakr...
  • 7 篇 lipton zachary c...
  • 7 篇 wang ruodu

语言

  • 258 篇 英文
  • 39 篇 其他
检索条件"机构=Departments of Statistics & Data Science and of Machine Learning"
297 条 记 录,以下是41-50 订阅
排序:
Counterfactually comparing abstaining classifiers  23
Counterfactually comparing abstaining classifiers
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Yo Joong Choe Aditya Gangrade Aaditya Ramdas Data Science Institute University of Chicago Department of EECS University of Michigan Dept. of Statistics and Data Science Machine Learning Department Carnegie Mellon University
Abstaining classifiers have the option to abstain from making predictions on inputs that they are unsure about. These classifiers are becoming increasingly popular in high-stakes decision-making problems, as they can ...
来源: 评论
Decision-focused evaluation of worst-case distribution shift  24
Decision-focused evaluation of worst-case distribution shift
收藏 引用
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence
作者: Kevin Ren Yewon Byun Bryan Wilder Statistics and Data Science Dept. Carnegie Mellon University Pittsburgh Pennsylvania Machine Learning Dept. Carnegie Mellon University Pittsburgh Pennsylvania
Recent studies have shown that performance on downstream optimization tasks often diverges from standard accuracy-based losses, highlighting that the loss function of a predictive model should align with the decision ...
来源: 评论
A Permutation-Free Kernel Independence Test
收藏 引用
Journal of machine learning Research 2023年 24卷
作者: Shekhar, Shubhanshu Kim, Ilmun Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Department of Applied Statistics Yonsei University Seodaemun-gu Seoul03722 Korea Republic of Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
In nonparametric independence testing, we observe i.i.d. data {(Xi,Yi)}in=1, where X ∈ X,Y ∈ Y lie in any general spaces, and we wish to test the null that X is independent of Y. Modern test statistics such as the k... 详细信息
来源: 评论
Optimal bounds for p sensitivity sampling via 2 augmentation
arXiv
收藏 引用
arXiv 2024年
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics and Lamarr Institute for Machine Learning and Artificial Intelligence TU Dortmund University Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop... 详细信息
来源: 评论
Turnstile p leverage score sampling with applications
arXiv
收藏 引用
arXiv 2024年
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics and Lamarr Institute for Machine Learning and Artificial Intelligence TU Dortmund University Dortmund Germany
The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple ... 详细信息
来源: 评论
Revisiting Optimism and Model Complexity in the Wake of Overparameterized machine learning
arXiv
收藏 引用
arXiv 2024年
作者: Patil, Pratik Du, Jin-Hong Tibshirani, Ryan J. Department of Statistics University of California Berkeley United States Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Common practice in modern machine learning involves fitting a large number of parameters relative to the number of observations. These overparameterized models can exhibit surprising generalization behavior, e.g., &qu... 详细信息
来源: 评论
Domain adaptation under open set label shift  22
Domain adaptation under open set label shift
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Saurabh Garg Sivaraman Balakrishnan Zachary C. Lipton Machine Learning Department Department of Statistics and Data Science Carnegie Mellon University
We introduce the problem of domain adaptation under Open Set Label Shift (OSLS) where the label distribution can change arbitrarily and a new class may arrive during deployment, but the class-conditional distributions...
来源: 评论
Nonlinear Regression with Residuals: Causal Estimation with Time-varying Treatments and Covariates
arXiv
收藏 引用
arXiv 2022年
作者: Bates, Stephen Kennedy, Edward Tibshirani, Robert Ventura, Valérie Wasserman, Larry Departments of EECS and Statistics University of California Berkeley United States Department of Statistics & Data Science Carnegie Mellon University United States Departments of Biomedical Data Science and Statistics Stanford University United States Department of Statistics Data Science and Neuroscience Institute Carnegie Mellon University United States Departments of Statistics & Data Science and of Machine Learning Carnegie Mellon University United States
Standard regression adjustment gives inconsistent estimates of causal effects when there are time-varying treatment effects and time-varying covariates. Loosely speaking, the issue is that some covariates are post-tre... 详细信息
来源: 评论
On the origins of linear representations in large language models  24
On the origins of linear representations in large language m...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Yibo Jiang Goutham Rajendran Pradeep Ravikumar Bryon Aragam Victor Veitch Department of Computer Science University of Chicago Machine Learning Department Carnegie Mellon University Booth School of Business University of Chicago Department of Statistics and Data Science Institute University of Chicago
Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To t...
来源: 评论
Identifying general mechanism shifts in linear causal representations  24
Identifying general mechanism shifts in linear causal repres...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Tianyu Chen Kevin Bello Francesco Locatello Bryon Aragam Pradeep Ravikumar Department of Statistics and Data Sciences University of Texas at Austin Booth School of Business University of Chicago and Machine Learning Department Carnegie Mellon University Institute of Science and Technology Austria Booth School of Business University of Chicago Machine Learning Department Carnegie Mellon University
We consider the linear causal representation learning setting where we observe a linear mixing of d unknown latent factors, which follow a linear structural causal model. Recent work has shown that it is possible to r...
来源: 评论