咨询与建议

限定检索结果

文献类型

  • 241 篇 期刊文献
  • 54 篇 会议
  • 2 册 图书

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 121 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 27 篇 生物工程
    • 25 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 14 篇 安全科学与工程
    • 13 篇 化学工程与技术
    • 12 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 173 篇 理学
    • 132 篇 数学
    • 93 篇 统计学(可授理学、...
    • 32 篇 生物学
    • 28 篇 系统科学
    • 21 篇 物理学
    • 15 篇 化学
    • 5 篇 地球物理学
  • 30 篇 管理学
    • 14 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 25 篇 machine learning
  • 8 篇 forecasting
  • 5 篇 optimization
  • 5 篇 embeddings
  • 5 篇 stochastic syste...
  • 4 篇 surveys
  • 4 篇 deep learning
  • 4 篇 generative adver...
  • 4 篇 matrix algebra
  • 4 篇 gaussian distrib...
  • 3 篇 causal discovery
  • 3 篇 prediction model...
  • 3 篇 probability dist...
  • 3 篇 statistics
  • 3 篇 gradient methods
  • 3 篇 aspect ratio
  • 3 篇 artificial intel...
  • 3 篇 banach spaces
  • 3 篇 random processes
  • 3 篇 calibration

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 18 篇 department of st...
  • 16 篇 machine learning...
  • 16 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 vector institute...
  • 14 篇 department of el...
  • 12 篇 departments of c...
  • 11 篇 machine learning...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 9 篇 department of st...
  • 8 篇 machine learning...
  • 8 篇 department of st...
  • 8 篇 department of st...
  • 7 篇 machine learning...
  • 7 篇 department of st...
  • 7 篇 department of st...
  • 6 篇 university kasse...

作者

  • 72 篇 ramdas aaditya
  • 19 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 12 篇 von lilienfeld o...
  • 10 篇 ravikumar pradee...
  • 10 篇 wang hongjian
  • 9 篇 shekhar shubhans...
  • 9 篇 aaditya ramdas
  • 9 篇 tibshirani ryan ...
  • 9 篇 xu ziyu
  • 9 篇 von rudorff guid...
  • 8 篇 sivaraman balakr...
  • 7 篇 lipton zachary c...
  • 7 篇 wang ruodu

语言

  • 258 篇 英文
  • 39 篇 其他
检索条件"机构=Departments of Statistics & Data Science and of Machine Learning"
297 条 记 录,以下是81-90 订阅
排序:
Homophily and Incentive Effects in Use of Algorithms  44
Homophily and Incentive Effects in Use of Algorithms
收藏 引用
44th Annual Meeting of the Cognitive science Society: Cognitive Diversity, CogSci 2022
作者: Fogliato, Riccardo Fazelpour, Sina Gupta, Shantanu Lipton, Zachary Danks, David Department of Statistics and Data Science Carnegie Mellon University United States Department of Philosophy and Religion Khoury College of Computer Sciences Northeastern University United States Machine Learning Department Carnegie Mellon University United States Halicioğlu Data Science Institute Department of Philosophy University of California San Diego United States
As algorithmic tools increasingly aid experts in making consequential decisions, the need to understand the precise factors that mediate their influence has grown commensurately. In this paper, we present a crowdsourc... 详细信息
来源: 评论
Correcting for heterogeneity in real-time epidemiological indicators
arXiv
收藏 引用
arXiv 2023年
作者: Rumack, Aaron Rosenfeld, Roni Townes, F. William Machine Learning Department Carnegie Mellon University PittsburghPA United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA United States
Auxiliary data sources have become increasingly important in epidemiological surveillance, as they are often available at a finer spatial and temporal resolution, larger coverage, and lower latency than traditional su... 详细信息
来源: 评论
Post-selection inference for e-value based confidence intervals
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Ziyu Wang, Ruodu Ramdas, Aaditya Departments of Statistics Carnegie Mellon University United States Departments of Machine Learning Carnegie Mellon University United States Department of Statistics and Actuarial Science University of Waterloo Canada
Suppose that one can construct a valid (1 − δ)-confidence interval (CI) for each of K parameters of potential interest. If a data analyst uses an arbitrary data-dependent criterion to select some subset S of paramete...
来源: 评论
Optimal Ridge Regularization for Out-of-Distribution Prediction
arXiv
收藏 引用
arXiv 2024年
作者: Patil, Pratik Du, Jin-Hong Tibshirani, Ryan J. Department of Statistics University of California BerkeleyCA94720 United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
We study the behavior of optimal ridge regularization and optimal ridge risk for out-of-distribution prediction, where the test distribution deviates arbitrarily from the train distribution. We establish general condi... 详细信息
来源: 评论
Implicit Regularization Paths of Weighted Neural Representations
arXiv
收藏 引用
arXiv 2024年
作者: Du, Jin-Hong Patil, Pratik Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics University of California BerkeleyCA94720 United States
We study the implicit regularization effects induced by (observation) weighting of pretrained features. For weight and feature matrices of bounded operator norms that are infinitesimally free with respect to (normaliz... 详细信息
来源: 评论
Position: insights from survey methodology can improve training data  24
Position: insights from survey methodology can improve train...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Stephanie Eckman Barbara Plank Frauke Kreuter Social Data Science Center University of Maryland College Park MD Center for Information and Language Processing (CIS) LMU Munich Germany and Computer Science Department IT University of Copenhagen Denmark and Munich Center for Machine Learning (MCML) LMU Munich Germany Institute for Statistics and Munich Center for Machine Learning (MCML) LMU Munich Germany and Social Data Science Center and Joint Program in Survey Methodology University of Maryland College Park MD
Whether future AI models are fair, trustworthy, and aligned with the public's interests rests in part on our ability to collect accurate data about what we want the models to do. However, collecting high-quality d...
来源: 评论
Best Arm Identification under Additive Transfer Bandits  55
Best Arm Identification under Additive Transfer Bandits
收藏 引用
55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021
作者: Neopane, Ojash Ramdas, Aaditya Singh, Aarti Carnegie Mellon University Machine Learning Department PittsburghPA United States Carnegie Mellon University Department of Statistics and Data Science PittsburghPA United States
We consider a variant of the best arm identification (BAI) problem in multi-armed bandits (MAB) in which there are two sets of arms (source and target), and the objective is to determine the best target arm while only... 详细信息
来源: 评论
A permutation-free kernel two-sample test
arXiv
收藏 引用
arXiv 2022年
作者: Shekhar, Shubhanshu Kim, Ilmun Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Yonsei University Korea Republic of
The kernel Maximum Mean Discrepancy (MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic u... 详细信息
来源: 评论
CENTRAL LIMIT THEOREMS FOR SMOOTH OPTIMAL TRANSPORT MAPS
arXiv
收藏 引用
arXiv 2023年
作者: Manole, Tudor Balakrishnan, Sivaraman Niles-Weed, Jonathan Wasserman, Larry Statistics and Data Science Center Massachusetts Institute of Technology United States Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Center for Data Science New York University United States Courant Institute of Mathematical Sciences New York University United States
One of the central objects in the theory of optimal transport is the Brenier map: the unique monotone transformation which pushes forward an absolutely continuous probability law onto any other given law. A line of re... 详细信息
来源: 评论
Frequentist Inference for Semi-mechanistic Epidemic Models with Interventions
arXiv
收藏 引用
arXiv 2023年
作者: Bong, Heejong Ventura, Valérie Wasserman, Larry Department of Statistics University of Michigan Ann ArborMI United States Department of Statistics & Data Science and Delphi Research Group Carnegie Mellon University PittsburghPA United States Department of Statistics & Data Science Machine Learning Department Delphi Research Group Carnegie Mellon University PittsburghPA United States
The effect of public health interventions on an epidemic are often estimated by adding the intervention to epidemic models. During the Covid-19 epidemic, numerous papers used such methods for making scenario predictio... 详细信息
来源: 评论