咨询与建议

限定检索结果

文献类型

  • 141 篇 会议
  • 55 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 197 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 107 篇 工学
    • 57 篇 计算机科学与技术...
    • 56 篇 控制科学与工程
    • 50 篇 软件工程
    • 23 篇 机械工程
    • 15 篇 光学工程
    • 14 篇 电气工程
    • 14 篇 信息与通信工程
    • 14 篇 生物医学工程(可授...
    • 12 篇 生物工程
    • 11 篇 材料科学与工程(可...
    • 11 篇 电子科学与技术(可...
    • 10 篇 仪器科学与技术
    • 10 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 化学工程与技术
    • 7 篇 土木工程
    • 7 篇 交通运输工程
    • 6 篇 建筑学
    • 6 篇 航空宇航科学与技...
  • 65 篇 理学
    • 28 篇 数学
    • 27 篇 物理学
    • 15 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 8 篇 化学
    • 8 篇 系统科学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 robots
  • 9 篇 manipulators
  • 9 篇 robotics and aut...
  • 8 篇 trajectory
  • 8 篇 control systems
  • 7 篇 mathematical mod...
  • 6 篇 computational mo...
  • 6 篇 robot kinematics
  • 6 篇 service robots
  • 5 篇 mechanical engin...
  • 4 篇 reinforcement le...
  • 4 篇 path planning
  • 4 篇 force control
  • 4 篇 neural networks
  • 4 篇 cameras
  • 4 篇 mobile robots
  • 4 篇 robot sensing sy...
  • 4 篇 real-time system...
  • 4 篇 fault detection
  • 4 篇 accuracy

机构

  • 5 篇 state key labora...
  • 4 篇 university of sc...
  • 4 篇 institute for sy...
  • 4 篇 department of in...
  • 4 篇 dept. of advance...
  • 4 篇 dept. of mech. e...
  • 4 篇 state key labora...
  • 4 篇 dept. mechanical...
  • 4 篇 dept. of electri...
  • 4 篇 robotics and aut...
  • 3 篇 dept. of robotic...
  • 3 篇 guangdong provin...
  • 3 篇 center for robot...
  • 3 篇 dept. of electri...
  • 3 篇 satbayev univers...
  • 3 篇 dept. of robotic...
  • 3 篇 dept. of automot...
  • 3 篇 faculty of elect...
  • 2 篇 shenzhen college...
  • 2 篇 shenzhen key lab...

作者

  • 9 篇 dong zaili
  • 6 篇 liu lianqing
  • 6 篇 wang zhidong
  • 5 篇 xinyu wu
  • 5 篇 wang zhiyu
  • 5 篇 zoe doulgeri
  • 5 篇 yuan shuai
  • 4 篇 tin lun lam
  • 4 篇 ronghuai qi
  • 4 篇 leonidas koutras
  • 4 篇 yangsheng xu
  • 4 篇 yen-lun chen
  • 3 篇 kim jung-ju
  • 3 篇 qianqian wang
  • 3 篇 miller w.c.
  • 3 篇 reza ghabcheloo
  • 3 篇 loh n.k.
  • 3 篇 koo kyung-wan
  • 3 篇 newman paul
  • 3 篇 hou jing

语言

  • 187 篇 英文
  • 7 篇 其他
  • 3 篇 朝鲜文
检索条件"机构=Dept. of Automation and Robotics Engineering"
197 条 记 录,以下是61-70 订阅
排序:
A Tool to Evaluate Industrial Cobot Safety Readiness from a System-Wide Perspective: an Empirical Validation
SSRN
收藏 引用
SSRN 2023年
作者: Berx, Nicole Decré, Wilm Pintelon, Liliane Dept. Mechanical Engineering Centre for Industrial Management/Traffic and Infrastructure KU Leuven Leuven3001 Belgium Dept. Mechanical Engineering Division Robotics Automation and Mechatronics KU Leuven Leuven3001 Belgium Core Lab M&A Flanders Make@KU Leuven Heverlee3001 Belgium
The emergence of collaborative robots (cobots) has transformed the interaction between humans and robots in industrial workspaces. While cobots offer significant advantages in productivity and flexibility, their uniqu... 详细信息
来源: 评论
Safety-Critical Optimal Control for Robotic Manipulators in A Cluttered Environment
arXiv
收藏 引用
arXiv 2022年
作者: Ding, Xuda Wang, Han Ren, Yi Zheng, Yu Chen, Cailian He, Jianping The Dept. of Automation Shanghai Jiao Tong University Shanghai China The Dept. of Engineering Science University of Oxford Oxford United Kingdom The Tencent Robotics X Lab Shenzhen China
Designing safety-critical control for robotic manipulators is challenging, especially in a cluttered environment. First, the actual trajectory of a manipulator might deviate from the planned one due to the complex col... 详细信息
来源: 评论
Semiconductor Manufacturing Industry: Assessment, Challenges, and Future Trends  2
Semiconductor Manufacturing Industry: Assessment, Challenges...
收藏 引用
2nd International Conference on Advanced Innovations in Smart Cities, ICAISC 2025
作者: Musa, Yasmin Tantawi, Khalid Mikhail, Maged Ma, Jeffrey Alharthi, Dalal Flatt, Larry Potter, Lyn Motlow State Community College Department of Career Readiness SmyrnaTN United States Department of Engineering Management and Technology University of Tennessee at Chattanooga TN United States Purdue University Northwest Hammond Department of Engineering Technology IN United States Saint Louis University Saint Louis Department of Mechanical Engineering MO United States College of Applied Science and Technology University of Arizona Tuscan AZ United States Robotics and Automation Center Motlow State Community College McMinnvilleTN United States Chattanooga State Community College Chattanooga State Community College Dept. of Engineering Systems Tech. ChattanoogaTN United States
In this work we evaluate the state of the semiconductor manufacturing industry and its challenges and trends. Future trends in the industry are analyzed from three perspectives: the evolution of Industry 4.0, the adva... 详细信息
来源: 评论
Design and Mechatronics of a Neurosurgical Robot for Tumor Ablation under MRI
Automation, Robotics and Communications for Industry 4.0/5.0
收藏 引用
automation, robotics and Communications for Industry 4.0/5.0 2023年 2023卷 75-76页
作者: Ding, Qingpeng Yan, Wanquan Chen, Jianghua Yan, Kim Lam, Chun Ping Cheng, Shing Shin Dept. of Mechanical and Automation Engineering The Chinese University of Hong Kong Sha Tin Hong Kong Multi-Scale Medical Robotics Center Hong Kong Science Park N.T Hong Kong
Straight rigid instruments are still dominant tools used in most existing surgical cases in the human brain. The lack of distal dexterity and compatibility with the magnetic resonance imaging (MRI) limit the usage of ... 详细信息
来源: 评论
DROPO: Sim-to-Real Transfer with Offline Domain Randomization
arXiv
收藏 引用
arXiv 2022年
作者: Tiboni, Gabriele Arndt, Karol Kyrki, Ville Dept. of Control and Computer Engineering Politecnico di Torino Francesco Ferrucci Street 112 Torino10141 Italy Intelligent Robotics Group Dept. of Electrical Engineering and Automation Aalto University Maarintie 8 Espoo02150 Finland
In recent years, domain randomization over dynamics parameters has gained a lot of traction as a method for sim-to-real transfer of reinforcement learning policies in robotic manipulation;however, finding optimal rand... 详细信息
来源: 评论
A review of energy efficiency and Machine learning analysis for additive manufacturing of direct laser metal deposition
收藏 引用
Materials Today: Proceedings 2024年
作者: P. Panneer Selvam S. Prabhakaran B. Vinod T. Jishnu Dept. of Robotics and Automation Engineering PSG College of Technology Coimbatore 641004 India
Additive Manufacturing (AM) is an innovative industrial process that utilizes layering of materials to create unique products with an unprecedented level of flexibility. To maximize the benefits of AM, it is crucial t... 详细信息
来源: 评论
A controller for reaching and unveiling a partially occluded object of interest with an eye-in-hand robot
arXiv
收藏 引用
arXiv 2021年
作者: Papageorgiou, Dimitrios Koutras, Leonidas Doulgeri, Zoe The Automation & Robotics Lab Dept. of Electrical & Computer Engineering Aristotle University of Thessaloniki Greece
In this work, a control scheme for approaching and unveiling a partially occluded object of interest is proposed. The control scheme is based only on the classified point cloud obtained by the in-hand camera attached ... 详细信息
来源: 评论
Addressing Sample Efficiency and Model-bias in Model-based Reinforcement Learning
Addressing Sample Efficiency and Model-bias in Model-based R...
收藏 引用
International Conference on Machine Learning and Applications (ICMLA)
作者: Akhil S Anand Jens Erik Kveen Fares Abu-Dakka Esten Ingar Grøtli Jan Tommy Gravdahl Dept. of Engineering Cybernetics Norwegian University of Science and Technology (NTNU) Trondheim Norway Department of Electrical Engineering and Automation (EEA) Intelligent Robotics Group Aalto University Aalto Finland Dept. of Mathematics and Cybernetics SINTEF Digital Trondheim Norway
Model-based reinforcement learning promises to be an effective way to bring reinforcement learning to real-world robotic systems by offering a sample efficient learning approach compared to model-free reinforcement le... 详细信息
来源: 评论
OpenDR: An Open Toolkit for Enabling High Performance, Low Footprint Deep Learning for robotics
arXiv
收藏 引用
arXiv 2022年
作者: Passalis, Nikolaos Pedrazzi, S. Babuska, R. Burgard, W. Dias, D. Ferro, F. Gabbouj, M. Green, O. Iosifidis, A. Kayacan, E. Kober, J. Michel, O. Nikolaidis, N. Nousi, P. Pieters, R. Tzelepi, M. Valada, A. Tefas, A. Dept. of Informatics Aristotle University of Thessaloniki Greece Cyberbotics Switzerland Dept. of Cognitive Robotics Delft University of Technology Netherlands Dept. of Computer Science University of Freiburg Germany PAL Robotics Spain The units of Computing Sciences and Automation Technology and Mechanical Engineering Tampere University Finland Agrointelli Denmark The Department of Electrical and Computer Engineering Aarhus University Denmark
Existing Deep Learning (DL) frameworks typically do not provide ready-to-use solutions for robotics, where very specific learning, reasoning, and embodiment problems exist. Their relatively steep learning curve and th... 详细信息
来源: 评论
Sense-Assess-eXplain (SAX): Building Trust in Autonomous Vehicles in Challenging Real-World Driving Scenarios  31
Sense-Assess-eXplain (SAX): Building Trust in Autonomous Veh...
收藏 引用
31st IEEE Intelligent Vehicles Symposium, IV 2020
作者: Gadd, Matthew De Martini, Daniele Marchegiani, Letizia Newman, Paul Kunze, Lars Oxford Robotics Institute University of Oxford Dept. Engineering Science United Kingdom Automation and Control Aalborg University Dept. Electronic Systems Denmark
This paper discusses ongoing work in demonstrating research in mobile autonomy in challenging driving scenarios. In our approach, we address fundamental technical issues to overcome critical barriers to assurance and ... 详细信息
来源: 评论