咨询与建议

限定检索结果

文献类型

  • 196 篇 会议
  • 71 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 150 篇 工学
    • 126 篇 计算机科学与技术...
    • 107 篇 软件工程
    • 32 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 29 篇 信息与通信工程
    • 22 篇 控制科学与工程
    • 21 篇 光学工程
    • 13 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 仪器科学与技术
    • 8 篇 化学工程与技术
    • 6 篇 土木工程
    • 6 篇 安全科学与工程
    • 5 篇 网络空间安全
    • 4 篇 建筑学
  • 99 篇 理学
    • 53 篇 数学
    • 33 篇 生物学
    • 31 篇 物理学
    • 27 篇 统计学(可授理学、...
    • 10 篇 系统科学
    • 9 篇 化学
    • 4 篇 地球物理学
  • 34 篇 管理学
    • 19 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 21 篇 医学
    • 20 篇 基础医学(可授医学...
    • 20 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 6 篇 农学
    • 6 篇 作物学
  • 3 篇 经济学
  • 3 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 accuracy
  • 9 篇 feature extracti...
  • 9 篇 machine learning
  • 9 篇 training
  • 8 篇 support vector m...
  • 8 篇 artificial intel...
  • 7 篇 computational mo...
  • 7 篇 computer vision
  • 6 篇 real-time system...
  • 6 篇 machine learning...
  • 5 篇 deep learning
  • 5 篇 convolutional ne...
  • 4 篇 learning systems
  • 4 篇 optimization
  • 4 篇 semantics
  • 4 篇 python
  • 3 篇 image enhancemen...
  • 3 篇 reinforcement le...
  • 3 篇 sensitivity
  • 3 篇 automation

机构

  • 5 篇 bmbf research hu...
  • 5 篇 centre for cogni...
  • 5 篇 dept. of electri...
  • 4 篇 ai and machine l...
  • 4 篇 data61 commonwea...
  • 4 篇 chair of theoret...
  • 4 篇 dept. of compute...
  • 4 篇 dept. of machine...
  • 3 篇 dept. of math an...
  • 3 篇 department of co...
  • 3 篇 department of co...
  • 3 篇 dept. of electri...
  • 3 篇 dept. of compute...
  • 3 篇 dept. of electri...
  • 3 篇 darmstadt
  • 3 篇 australian insti...
  • 3 篇 machine learning...
  • 3 篇 dept. of compute...
  • 3 篇 dept. of languag...
  • 3 篇 machine learning...

作者

  • 6 篇 shams mahmoud y.
  • 5 篇 rafael f. schaef...
  • 5 篇 horváth tamás
  • 5 篇 wrobel stefan
  • 5 篇 kersting kristia...
  • 5 篇 h. vincent poor
  • 5 篇 bouaynaya nidhal...
  • 5 篇 rasool ghulam
  • 4 篇 hong xudong
  • 4 篇 demberg vera
  • 4 篇 holger boche
  • 4 篇 andrea grigoresc...
  • 4 篇 mahmoud y. shams
  • 3 篇 gagandeep kaur
  • 3 篇 pareek piyush ku...
  • 3 篇 bhatnagar roheet
  • 3 篇 rutuja rajendra ...
  • 3 篇 villani mattias
  • 3 篇 govinda rajulu g...
  • 3 篇 klaus-robert mül...

语言

  • 262 篇 英文
  • 9 篇 其他
检索条件"机构=Dept. of Computer Vision and Machine Learning"
271 条 记 录,以下是201-210 订阅
排序:
End-to-end, single-stream temporal action detection in untrimmed videos  28
End-to-end, single-stream temporal action detection in untri...
收藏 引用
28th British machine vision Conference, BMVC 2017
作者: Buch, Shyamal Escorcia, Victor Ghanem, Bernard Fei-Fei, Li Niebles, Juan Carlos Stanford Vision and Learning Lab. Dept. of Computer Science Stanford University United States Image and Video Understanding Lab. Visual Computing Center KAUST Saudi Arabia
In this work, we present a new intuitive, end-to-end approach for temporal action detection in untrimmed videos. We introduce our new architecture for Single-Stream Temporal Action Detection (SS-TAD), which effectivel... 详细信息
来源: 评论
Time Series Kernel Similarities for Predicting Paroxysmal Atrial Fibrillation from ECGs
Time Series Kernel Similarities for Predicting Paroxysmal At...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Filippo Maria Bianchi Lorenzo Livi Alberto Ferrante Jelena Milosevic Miroslaw Malek Machine Learning Group UiT the Arctic University of Norway Tromsø Norway Dept. of Computer Science University of Exeter Exeter UK ALaRI Faculty of Informatics Universitá della Svizzera italiana Lugano Switzerland Institute of Telecommunications TU Wien Vienna Austria
We tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in ma... 详细信息
来源: 评论
Time series kernel similarities for predicting paroxysmal atrial fibrillation from ECGs
arXiv
收藏 引用
arXiv 2018年
作者: Bianchi, Filippo Maria Livi, Lorenzo Ferrante, Alberto Milosevic, Jelena Malek, Miroslaw ALaRI Faculty of Informatics Università della Svizzera italiana Lugano Switzerland Machine Learning Group UiT the Arctic University of Norway Tromsø Norway Institute of Telecommunications TU Wien Vienna Austria Dept. of Computer Science University of Exeter Exeter United Kingdom
We tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in ma... 详细信息
来源: 评论
Uncertainty Quantification in Deep learning for Safer Neuroimage Enhancement
arXiv
收藏 引用
arXiv 2019年
作者: Tanno, Ryutaro Worrall, Daniel E. Kaden, Enrico Ghosh, Aurobrata Grussu, Francesco Bizzi, Alberto Sotiropoulos, Stamatios N. Criminisi, Antonio Alexander, Daniel C. Centre for Medical Image Computing and Dept. Computer Science Ucl Gower Street LondonWC1E 6BT United Kingdom Machine Learning Lab University of Amsterdam Netherlands Faculty of Brain Sciences Institute of Neurology Ucl United Kingdom Neuroradiology Unit Foundation Irccs Carlo Besta Neurological Institute Milan Italy School of Medicine and Nihr Biomedical Research Centre Sir Peter Mansfield Imaging Centre University of Nottingham United Kingdom Wellcome Centre for Integrative Neuroimaging University of Oxford United Kingdom Microsoft Research Cambridge United Kingdom
Deep learning (DL) has shown great potential in medical image enhancement problems, such as super-resolution or image synthesis. However, to date little consideration has been given to uncertainty quantification over ... 详细信息
来源: 评论
Adaptive stimulus selection for optimizing neural population responses  17
Adaptive stimulus selection for optimizing neural population...
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing Systems
作者: Benjamin R. Cowley Ryan C. Williamson Katerina Acar Matthew A. Smith Byron M. Yu Machine Learning Dept. and Center for Neural Basis of Cognition Machine Learning Dept. and Center for Neural Basis of Cognition and School of Medicine Center for Neural Basis of Cognition and Dept. of Neuroscience Center for Neural Basis of Cognition and Dept. of Ophthalmology University of Pittsburgh Center for Neural Basis of Cognition and Dept. of Electrical and Computer Engineering and Dept. of Biomedical Engineering Carnegie Mellon University
Adaptive stimulus selection methods in neuroscience have primarily focused on maximizing the firing rate of a single recorded neuron. When recording from a population of neurons, it is usually not possible to find a s...
来源: 评论
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
arXiv
收藏 引用
arXiv 2023年
作者: Lekadir, Karim Feragen, Aasa Fofanah, Abdul Joseph Frangi, Alejandro F. Buyx, Alena Emelie, Anais Lara, Andrea Porras, Antonio R. Chan, An-Wen Navarro, Arcadi Glocker, Ben Botwe, Benard O. Khanal, Bishesh Beger, Brigit Wu, Carol C. Cintas, Celia Langlotz, Curtis P. Rueckert, Daniel Mzurikwao, Deogratias Fotiadis, Dimitrios I. Zhussupov, Doszhan Ferrante, Enzo Meijering, Erik Weicken, Eva González, Fabio A. Asselbergs, Folkert W. Prior, Fred Krestin, Gabriel P. Collins, Gary S. Tegenaw, Geletaw S. Kaissis, Georgios Misuraca, Gianluca Tsakou, Gianna Dwivedi, Girish Kondylakis, Haridimos Jayakody, Harsha Woodruf, Henry C. Mayer, Horst Joachim Aerts, Hugo JWL Walsh, Ian Chouvarda, Ioanna Buvat, Irène Tributsch, Isabell Rekik, Islem Duncan, James Kalpathy-Cramer, Jayashree Zahir, Jihad Park, Jinah Mongan, John Gichoya, Judy W. Schnabel, Julia A. Kushibar, Kaisar Riklund, Katrine Mori, Kensaku Marias, Kostas Amugongo, Lameck M. Fromont, Lauren A. Maier-Hein, Lena Alberich, Leonor Cerdá Rittner, Leticia Phiri, Lighton Marrakchi-Kacem, Linda Donoso-Bach, Lluís Martí-Bonmatí, Luis Cardoso, M. Jorge Bobowicz, Maciej Shabani, Mahsa Tsiknakis, Manolis Zuluaga, Maria A. Bielikova, Maria Fritzsche, Marie-Christine Camacho, Marina Linguraru, Marius George Wenzel, Markus De Bruijne, Marleen Tolsgaard, Martin G. Ghassemi, Marzyeh Ashrafuzzaman, Md Goisauf, Melanie Yaqub, Mohammad Abadía, Mónica Cano Mahmoud, Mukhtar M.E. Elattar, Mustafa Rieke, Nicola Papanikolaou, Nikolaos Lazrak, Noussair Díaz, Oliver Salvado, Olivier Pujol, Oriol Sall, Ousmane Guevara, Pamela Gordebeke, Peter Lambin, Philippe Brown, Pieta Abolmaesumi, Purang Dou, Qi Lu, Qinghua Osuala, Richard Nakasi, Rose Zhou, S. Kevin Napel, Sandy Colantonio, Sara Albarqouni, Shadi Joshi, Smriti Carter, Stacy Klein, Stefan Petersen, Steffen E. Aussó, Susanna Awate, Suyash Raviv, Tammy Riklin Cook, Tessa Mutsvangwa, Tinashe E.M. Rogers, Wendy A. Niessen, Wiro J. Puig-Bosch, Xènia Zeng, Yi Mohammed, Yunusa G. Aquino, Yves Saint James Salahuddin, Zohaib Starmans, Martijn P.A. Department de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain DTU Compute Technical University of Denmark Kgs Lyngby Denmark Department of Mathematics and Computer Science Faculty of Science and Technology Milton Margai Technical University Freetown Sierra Leone Center for Computational Imaging & Simulation Technologies in Biomedicine Schools of Computing and Medicine University of Leeds Leeds United Kingdom Cardiovascular Science and Electronic Engineering Departments KU Leuven Leuven Belgium Institute of History and Ethics in Medicine Technical University of Munich Munich Germany Faculty of Engineering of Systems Informatics and Sciences of Computing Galileo University Guatemala City Guatemala Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus AuroraCO United States Department of Medicine Women’s College Research Institute University of Toronto Toronto Canada Universitat Pompeu Fabra BarcelonaBeta Brain Research Center Barcelona Spain Department of Computing Imperial College London London United Kingdom School of Biomedical & Allied Health Sciences University of Ghana Accra Ghana Department of Midwifery & Radiography School of Health & Psychological Sciences City University of London United Kingdom Kathmandu Nepal European Heart Network Brussels Belgium Department of Thoracic Imaging University of Texas MD Anderson Cancer Center Houston United States IBM Research Africa Nairobi Kenya Departments of Radiology Medicine and Biomedical Data Science Stanford University School of Medicine Stanford United States Institute for AI and Informatics in Medicine Klinikum rechts der Isar Technical University Munich Munich Germany Department of Computing Imperial College London London United Kingdom Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania United Republic of Ioannina Greece Almaty AI Lab Almaty Kazakhstan
Background: Despite major advances in artificial intelligence (AI) research for healthcare, the deployment and adoption of AI technologies remain limited in clinical practice. In recent years, concerns have been raise... 详细信息
来源: 评论
Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG Short title: Convolutional neural networks in EEG analysis
arXiv
收藏 引用
arXiv 2017年
作者: Schirrmeister, Robin Tibor Springenberg, Jost Tobias Fiederer, Lukas Dominique Josef Glasstetter, Martin Eggensperger, Katharina Tangermann, Michael Hutter, Frank Burgard, Wolfram Ball, Tonio Intracranial EEG and Brain Imaging lab Epilepsy Center Medical Center University of Freiburg BrainLinks-BrainTools Cluster of Excellence University of Freiburg Machine Learning Lab Computer Science Dept. University of Freiburg Neurobiology and Biophysics Faculty of Biology University of Freiburg Machine Learning for Automated Algorithm Design Lab Computer Science Dept. University of Freiburg Brain State Decoding Lab Computer Science Dept. University of Freiburg Autonomous Intelligent Systems Lab Computer Science Dept. University of Freiburg
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, i.e. learning from the raw data. Now, there is increasing interest in using deep ConvNet... 详细信息
来源: 评论
Controlling a remotely located Robot using Hand Gestures in Real-time: A DSP implementation
arXiv
收藏 引用
arXiv 2017年
作者: Raheja, Jagdish Lal Rajsekhar, Gadula A. Chaudhary, Ankit Machine Vision Lab CEERI-CSIR Pilani Rajasthan333031 India Dept. of Computer Science Northwest Missouri State University MaryvilleMO64468 United States
Telepresence is a necessity for present time as we can't reach everywhere and also it is useful in saving human life at dangerous places. A robot, which could be controlled from a distant location, can solve these... 详细信息
来源: 评论
A unified approach for learning the parameters of Sum-Product Networks  30
A unified approach for learning the parameters of Sum-Produc...
收藏 引用
30th Annual Conference on Neural Information Processing Systems, NIPS 2016
作者: Zhao, Han Poupart, Pascal Gordon, Geoff Machine Learning Dept. Carnegie Mellon University United States School of Computer Science University of Waterloo Canada
We present a unified approach for learning the parameters of Sum-Product networks (SPNs). We prove that any complete and decomposable SPN is equivalent to a mixture of trees where each tree corresponds to a product of... 详细信息
来源: 评论
DESI Strong Lens Foundry I: HST Observations and Modeling with GIGA-Lens
arXiv
收藏 引用
arXiv 2025年
作者: Huang, X. Baltasar, S. Ratier-Werbin, N. Storfer, C. Sheu, W. Agarwal, S. Tamargo-Arizmendi, M. Schlegel, D.J. Aguilar, J. Ahlen, S. Aldering, G. Banka, S. BenZvi, S. Bianchi, D. Bolton, A. Brooks, D. Cikota, A. Claybaugh, T. de la Macorra, A. Dey, A. Doel, P. Edelstein, J. Filipp, A. Forero-Romero, J.E. Gaztañaga, E. Gontcho, S.A. Gontcho Gu, A. Gutierrez, G. Honscheid, K. Jullo, E. Juneau, S. Kehoe, R. Kirkby, D. Kisner, T. Kremin, A. Kwon, K.J. Lambert, A. Landriau, M. Lang, D. Le Guillou, L. Liu, J. Meisner, A. Miquel, R. Moustakas, J. Myers, A.D. Perlmutter, S. Pérez-Ràfols, I. Prada, F. Rossi, G. Rubin, D. Sanchez, E. Schubnell, M. Shu, Y. Silver, E. Sprayberry, D. Suzuki, N. Tarlé, G. Weaver, B.A. Zou, H. Department of Physics & Astronomy University of San Francisco San FranciscoCA94117 United States Physics Division Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States Department of Physics Complutense University of Madrid Madrid28040 Spain Department of Mathematics Complutense University of Madrid Madrid28040 Spain Institute for Astronomy University of Hawai’i HonoluluHI96822-1897 United States Department of Physics & Astronomy University of California Los Angeles Los AngelesCA90095 United States University of Chicago Department of Astronomy ChicagoIL60615 United States Department of Physics & Astronomy University of Pittsburgh PittsburghPA15260 United States Physics Dept. Boston University 590 Commonwealth Avenue BostonMA02215 United States Department of Electrical Engineering & Computer Sciences University of California Berkeley BerkeleyCA94720 United States Department of Physics & Astronomy University of Rochester 206 Bausch and Lomb Hall P.O. Box 270171 RochesterNY14627-0171 United States Dipartimento di Fisica "Aldo Pontremoli" Università degli Studi di Milano Via Celoria 16 MilanoI-20133 Italy NSF’s National Optical-Infrared Astronomy Research Laboratory TucsonAZ85719 United States Department of Physics & Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom Gemini Observatory NSF’s NOIRLab Casilla 603 La Serena Chile Instituto de Física Universidad Nacional Autónoma de México Circuito de la Investigación Científica Ciudad Universitaria Cd. de MéxicoC. P. 04510 Mexico Space Sciences Laboratory University of California Berkeley 7 Gauss Way BerkeleyCA94720 United States Université de Montréal Physics Department 1375 Av. Thérèse-Lavoie-Roux MontréalQCH2V 0B3 Canada Ciela – Montreal Institute for Astrophysical Data Analysis and Machine Learning 1375 Av. Thérèse-Lavoie-Roux MontréalQCH2V 0B3 Canada Technical University Munich TUM School of Natural Sciences
We present the Dark Energy Spectroscopic Instrument (DESI) Strong Lens Foundry. We discovered ∼ 3500 new strong gravitational lens candidates in the DESI Legacy Imaging Surveys using residual neural networks (ResNet)... 详细信息
来源: 评论