咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 10 篇 计算机科学与技术...
    • 6 篇 软件工程
  • 2 篇 理学
    • 2 篇 物理学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 2 篇 computational li...
  • 2 篇 natural language...
  • 2 篇 optical characte...
  • 1 篇 learning algorit...
  • 1 篇 taxonomies
  • 1 篇 errors
  • 1 篇 economic and soc...
  • 1 篇 sentiment analys...

机构

  • 7 篇 digital philolog...
  • 3 篇 digital philolog...
  • 2 篇 bayerische staat...
  • 2 篇 natural language...
  • 2 篇 nlp expert cente...
  • 1 篇 cognitive scienc...
  • 1 篇 center for infor...
  • 1 篇 department of ma...
  • 1 篇 bayerische staat...
  • 1 篇 digital philolog...

作者

  • 8 篇 çano erion
  • 5 篇 roth benjamin
  • 4 篇 märz luisa
  • 3 篇 schweter stefan
  • 2 篇 schmid katharina
  • 1 篇 schütze hinrich
  • 1 篇 poerner nina
  • 1 篇 vogli xhesilda
  • 1 篇 asgari ehsaneddi...
  • 1 篇 lamaj dario
  • 1 篇 zimmermann franz...
  • 1 篇 braune fabienne
  • 1 篇 thoma lukas

语言

  • 11 篇 英文
检索条件"机构=Digital Philology Data Mining and Machine Learning"
11 条 记 录,以下是1-10 订阅
排序:
AlbNER: A Corpus for Named Entity Recognition in Albanian
arXiv
收藏 引用
arXiv 2023年
作者: Çano, Erion Digital Philology Data Mining Machine Learning University of Vienna Austria
Scarcity of resources such as annotated text corpora for under-resourced languages like Albanian is a serious impediment in computational linguistics and natural language processing research. This paper presents AlbNE... 详细信息
来源: 评论
AlbMoRe: A Corpus of Movie Reviews for Sentiment Analysis in Albanian
arXiv
收藏 引用
arXiv 2023年
作者: Çano, Erion Digital Philology Data Mining and Machine Learning University of Vienna Austria
Lack of available resources such as text corpora for low-resource languages seriously hinders research on natural language processing and computational linguistics. This paper presents AlbMoRe, a corpus of 800 sentime... 详细信息
来源: 评论
AlbNews: A Corpus of Headlines for Topic Modeling in Albanian
arXiv
收藏 引用
arXiv 2024年
作者: Çano, Erion Lamaj, Dario Digital Philology Data Mining and Machine Learning University of Vienna Austria Cognitive Science Department of Applied Informatics Comenius University Bratislava Slovakia
The scarcity of available text corpora for low-resource languages like Albanian is a serious hurdle for research in natural language processing tasks. This paper introduces AlbNews, a collection of 600 topically label... 详细信息
来源: 评论
hmBERT: Historical Multilingual Language Models for Named Entity Recognition
hmBERT: Historical Multilingual Language Models for Named En...
收藏 引用
2022 Conference and Labs of the Evaluation Forum, CLEF 2022
作者: Schweter, Stefan März, Luisa Schmid, Katharina Çano, Erion Bayerische Staatsbibliothek München Digital Library/ Munich Digitization Center Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Natural Language Processing Expert Center Data:Lab Volkswagen AG Munich Germany
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usuall... 详细信息
来源: 评论
Topic Segmentation of Research Article Collections
arXiv
收藏 引用
arXiv 2022年
作者: Çano, Erion Roth, Benjamin Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria
Collections of research article data harvested from the web have become common recently since they are important resources for experimenting on tasks such as named entity recognition, text summarization, or keyword ge... 详细信息
来源: 评论
Is the Computation of Abstract Sameness Relations Human-Like in Neural Language Models?
arXiv
收藏 引用
arXiv 2022年
作者: Thoma, Lukas Roth, Benjamin Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria
In recent years, deep neural language models have made strong progress in various NLP tasks. This work explores one facet of the question whether state-of-the-art NLP models exhibit elementary mechanisms known from hu... 详细信息
来源: 评论
CSRCZ: A dataset About Corporate Social Responsibility in Czech Republic
arXiv
收藏 引用
arXiv 2023年
作者: Vogli, Xhesilda Çano, Erion Department of Management Faculty of Economics and Management Czech University of Life Sciences Czech Republic Digital Philology Data Mining and Machine Learning University of Vienna Austria
As stakeholders' pressure on corporates for disclosing their corporate social responsibility operations grows, it is crucial to understand how efficient corporate disclosure systems are in bridging the gap between... 详细信息
来源: 评论
Focused contrastive training for test-based constituency analysis
arXiv
收藏 引用
arXiv 2021年
作者: Roth, Benjamin Çano, Erion Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria
We propose a scheme for self-training of grammaticality models for constituency analysis based on linguistic tests. A pre-trained language model is fine-tuned by contrastive estimation of grammatical sentences from a ... 详细信息
来源: 评论
HmBERT: Historical Multilingual Language Models for Named Entity Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Schweter, Stefan März, Luisa Schmid, Katharina Çano, Erion Bayerische Staatsbibliothek München Digital Library/ Munich Digitization Center Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Natural Language Processing Expert Center Data:Lab Volkswagen AG Munich Germany
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usuall... 详细信息
来源: 评论
KnowMAN: Weakly supervised multinomial adversarial networks
arXiv
收藏 引用
arXiv 2021年
作者: März, Luisa Asgari, Ehsaneddin Braune, Fabienne Zimmermann, Franziska Roth, Benjamin Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Nlp Expert Center Data:Lab Volkswagen Ag Munich Germany
The absence of labeled data for training neural models is often addressed by leveraging knowledge about the specific task, resulting in heuristic but noisy labels. The knowledge is captured in labeling functions, whic... 详细信息
来源: 评论