作者:
Boumaraf, MessaoudaMerazka, FatihaLISIC Laboratory
Telecommunications Department Electronic and Computer Engineering Faculty USTHB University Algiers Algeria LISIC Laboratory
Telecommunications Department Electrical Engineering Faculty USTHB University Algiers Algeria
This paper presents a speech encryption algorithm utilizing chaotic shift keying alongside error recovery techniques for the G.722.2 codec. The algorithm employs chaotic data interleaving on speech inter-frames to rep...
详细信息
Recommender systems play an essential role in decision-making in the information age by reducing information overload via retrieving the most relevant information in various applications. They also present great oppor...
详细信息
Within the electronic design automation(EDA) domain, artificial intelligence(AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutio...
详细信息
Within the electronic design automation(EDA) domain, artificial intelligence(AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding,overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level(RTL) designs, circuit netlists,and physical layouts. We champion the creation of large circuit models(LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area(PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems' capabilities.
Depression has the potential to impact death rates, particularly when it comes to death by suicide. Inadequate diagnosis may result in a delay or unsuitable therapy, which can worsen symptoms of depression. Unaddresse...
详细信息
Keeping track of time is regarded as an essential human behavior. The question of how the brain deals with temporal information remains a subject of scholarly debate. The current investigation aims to explore the mech...
详细信息
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first *** study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar r...
详细信息
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first *** study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and *** proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN *** GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were *** model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
Speech is a fundamental means of human interaction. Speaker Identification (SI) plays a crucial role in various applications, such as authentication systems, forensic investigation, and personal voice assistance. Howe...
详细信息
Speech is a fundamental means of human interaction. Speaker Identification (SI) plays a crucial role in various applications, such as authentication systems, forensic investigation, and personal voice assistance. However, achieving robust and secure SI in both open and closed environments remains challenging. To address this issue, researchers have explored new techniques that enable computers to better understand and interact with humans. Smart systems leverage Artificial Neural Networks (ANNs) to mimic the human brain in identifying speakers. However, speech signals often suffer from interference, leading to signal degradation. The performance of a Speaker Identification system (SIS) is influenced by various environmental factors, such as noise and reverberation in open and closed environments, respectively. This research paper is concerned with the investigation of SI using Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients, with an ANN serving as the classifier. To tackle the challenges posed by environmental interference, we propose a novel approach that depends on symmetric comb filters for modeling. In closed environments, we study the effect of reverberation on speech signals, as it occurs due to multiple reflections. To address this issue, we model the reverberation effect with comb filters. We explore different domains, including time, Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) domains for feature extraction to determine the best combination for SI in case of reverberation environments. Simulation results reveal that DWT outperforms other transforms, leading to a recognition rate of 93.75% at a Signal-to-Noise Ratio (SNR) of 15 dB. Additionally, we investigate the concept of cancelable SI to ensure user privacy, while maintaining high recognition rates. Our simulation results show a recognition rate of 97.5% at 0 dB using features extracted from speech signals and their DCTs. Fo
Disinformation,often known as fake news,is a major issue that has received a lot of attention *** researchers have proposed effective means of detecting and addressing *** machine and deep learning based methodologies...
详细信息
Disinformation,often known as fake news,is a major issue that has received a lot of attention *** researchers have proposed effective means of detecting and addressing *** machine and deep learning based methodologies for classification/detection of fake news are content-based,network(propagation)based,or multimodal methods that combine both textual and visual *** introduce here a framework,called FNACSPM,based on sequential pattern mining(SPM),for fake news analysis and *** this framework,six publicly available datasets,containing a diverse range of fake and real news,and their combination,are first transformed into a proper ***,algorithms for SPM are applied to the transformed datasets to extract frequent patterns(and rules)of words,phrases,or linguistic *** obtained patterns capture distinctive characteristics associated with fake or real news content,providing valuable insights into the underlying structures and commonalities of ***,the discovered frequent patterns are used as features for fake news *** framework is evaluated with eight classifiers,and their performance is assessed with various *** experiments were performed and obtained results show that FNACSPM outperformed other state-of-the-art approaches for fake news classification,and that it expedites the classification task with high accuracy.
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
This review investigates the effectiveness of exploiting the massive Artificial Intelligence (AI) technology in the diagnosis of prostate cancer histopathological images. It focuses on studying and analyzing the curre...
详细信息
暂无评论