In recent times, appropriate decision-making in challenging and critical situations has been very well supported by multicriteria decision-making (MCDM) methods. The technique for order of preference by similarity to ...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to i...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber ***, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
Compared to 2D imaging data,the 4D light field(LF)data retains richer scene’s structure information,which can significantly improve the computer’s perception capability,including depth estimation,semantic segmentati...
详细信息
Compared to 2D imaging data,the 4D light field(LF)data retains richer scene’s structure information,which can significantly improve the computer’s perception capability,including depth estimation,semantic segmentation,and LF ***,there is a contradiction between spatial and angular resolution during the LF image acquisition *** overcome the above problem,researchers have gradually focused on the light field super-resolution(LFSR).In the traditional solutions,researchers achieved the LFSR based on various optimization frameworks,such as Bayesian and Gaussian *** learning-based methods are more popular than conventional methods because they have better performance and more robust generalization *** this paper,the present approach can mainly divided into conventional methods and deep learning-based *** discuss these two branches in light field spatial super-resolution(LFSSR),light field angular super-resolution(LFASR),and light field spatial and angular super-resolution(LFSASR),***,this paper also introduces the primary public datasets and analyzes the performance of the prevalent approaches on these ***,we discuss the potential innovations of the LFSR to propose the progress of our research field.
Deep neural networks, especially face recognition models, have been shown to be vulnerable to adversarial examples. However, existing attack methods for face recognition systems either cannot attack black-box models, ...
详细信息
Learning modality-fused representations and processing unaligned multimodal sequences are meaningful and challenging in multimodal emotion *** approaches use directional pairwise attention or a message hub to fuse lan...
详细信息
Learning modality-fused representations and processing unaligned multimodal sequences are meaningful and challenging in multimodal emotion *** approaches use directional pairwise attention or a message hub to fuse language,visual,and audio ***,these fusion methods are often quadratic in complexity with respect to the modal sequence length,bring redundant information and are not *** this paper,we propose an efficient neural network to learn modality-fused representations with CB-Transformer(LMR-CBT)for multimodal emotion recognition from unaligned multi-modal ***,we first perform feature extraction for the three modalities respectively to obtain the local structure of the ***,we design an innovative asymmetric transformer with cross-modal blocks(CB-Transformer)that enables complementary learning of different modalities,mainly divided into local temporal learning,cross-modal feature fusion and global self-attention *** addition,we splice the fused features with the original features to classify the emotions of the ***,we conduct word-aligned and unaligned experiments on three challenging datasets,IEMOCAP,CMU-MOSI,and *** experimental results show the superiority and efficiency of our proposed method in both *** with the mainstream methods,our approach reaches the state-of-the-art with a minimum number of parameters.
The conventional Levenberg-Marquardt (LM) algorithm is a state-of-the-art trust-region optimization method for solving bundle adjustment problems in the Structure-from-Motion community, which not only takes advantage ...
详细信息
Block synchronization is an essential component of blockchain ***,blockchain systems tend to send all the transactions from one node to another for ***,such a method may lead to an extremely high network bandwidth ove...
详细信息
Block synchronization is an essential component of blockchain ***,blockchain systems tend to send all the transactions from one node to another for ***,such a method may lead to an extremely high network bandwidth overhead and significant transmission *** is crucial to speed up such a block synchronization process and save bandwidth consumption.A feasible solution is to reduce the amount of data transmission in the block synchronization process between any pair of ***,existing methods based on the Bloom filter or its variants still suffer from multiple roundtrips of communications and significant synchronization *** this paper,we propose a novel protocol named Gauze for fast block *** utilizes the Cuckoo filter(CF)to discern the transactions in the receiver’s mempool and the block to verify,providing an efficient solution to the problem of set reconciliation in the P2P(Peer-to-Peer Network)*** up to two rounds of exchanging and querying the CFs,the sending node can acknowledge whether the transactions in a block are contained by the receiver’s mempool or *** on this message,the sender only needs to transfer the missed transactions to the receiver,which speeds up the block synchronization and saves precious bandwidth *** evaluation results show that Gauze outperforms existing methods in terms of the average processing latency(about lower than Graphene)and the total synchronization space cost(about lower than Compact Blocks)in different scenarios.
The future sixth-generation(6G) paradigm aims to seamlessly integrate communication and environmental sensing capabilities into a single radio signal, promising improved efficiency and cost-effectiveness through simul...
详细信息
The future sixth-generation(6G) paradigm aims to seamlessly integrate communication and environmental sensing capabilities into a single radio signal, promising improved efficiency and cost-effectiveness through simultaneous data communications and environmental perception. At the core of this evolution, orthogonal frequency division multiplexing(OFDM) and its advanced waveforms emerge as pivotal for integrated sensing and communications(ISAC). This study introduces a concise and unified ISAC waveform design framework based on orthogonal multicarriers. This framework supports versatile applications of OFDM and its derivative waveforms within a generalized ISAC system, marking a significant leap in integrating communication and sensing capabilities. A distinguishing feature of this framework is its adaptability,allowing users to intelligently select modulation strategies based on their specific environmental needs. This adaptability optimizes performance across diverse scenarios. Central to our innovations is the proposal of discrete Fourier transformspread OFDM with index modulation(DFT-S-OFDM-IM). This framework is paired with newly proposed signal processing methods for single-input single-output and multiple-input multiple-output(MIMO) systems. Extensive evaluations highlight DFT-S-OFDM-IM's superiority, including dramatically reduced peak-to-average power ratios(PAPRs), competitive communication performance, and exceptional sensing capabilities, striking an elegant balance between communication capacity and environmental sensing precision.
Accurate and efficient airway segmentation is essential for evaluating pulmonary diseases, aiding diagnosis, reducing the preoperative burden of airway identification, and minimizing patient discomfort during prolonge...
详细信息
暂无评论