Electronic Health Records (EHR) are crucial for the success of digital healthcare, with a focus on putting consumers at the center of this transformation. However, the digitalization of healthcare records brings along...
详细信息
In the educational system, online courses are significant in developing the knowledge of users. The selection of courses is important for college students because of large unknown optional courses. The course recommen...
详细信息
Trained Artificial Intelligence (ai) models are challenging to install on edge devices as they are low in memory and computational power. Pruned ai (Pai) models are therefore needed with minimal degradation in perform...
详细信息
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict softwa...
详细信息
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict software bugs,but a more precise and general approach is *** bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning ***,these studies are not generalized and efficient when extended to other ***,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification *** methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a *** National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were *** reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode.
Early stopping methods in deep learning face the challenge of balancing the volume of training and validation data, especially in the presence of label noise. Concretely, sparing more data for validation from training...
The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industria...
详细信息
The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart *** and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of *** paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such *** proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual *** protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base *** performance of the proposed protocol is evaluated through the network simulator *** different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network *** 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.
In an era characterized by the overflow of textual information, the demand for effective text summarization techniques has become increasingly evident. This research study presents a novel solution to address this dem...
详细信息
Breast cancer is a major health concern for women worldwide, and early detection is vital to improve treatment outcomes. While existing techniques in mammogram classification have demonstrated promising results, their...
详细信息
Breast cancer is a major health concern for women worldwide, and early detection is vital to improve treatment outcomes. While existing techniques in mammogram classification have demonstrated promising results, their limitations become apparent when applied to larger datasets. The decline in performance with increased dataset size highlights the need for further research and advancements in the field to enhance the scalability and generalizability of these techniques. In this study, we propose a framework to classify breast cancer from mammograms using techniques such as mammogram enhancement, discrete cosine transform (DCT) dimensionality reduction, and deep convolutional neural network (DCNN). The first step is to improve the mammogram display to improve the visibility of key features and reduce noise. For this, we use 2-stage Contrast Limited Adaptive Histogram Equalization (CLAHE). DCT is then used to enhance mammograms to reduce residual data. It can provide effective reduction while preserving important diagnostic information. In this way, we reduce the computational complexity and increase the results of subsequent classification algorithms. Finally, DCNN is used on size-reduced DCT coefficients to learn feature discrimination and classification of mammograms. DCNN architectures have been optimized with various techniques to improve their performance, including regularization and hyperparameter tuning. We perform experiments on the DDSM dataset, a large dataset containing approximately 55,000 mammogram images, and demonstrate the effectiveness of the proposed method. We assess the proposed model’s performance by computing the precision, recall, accuracy, F1-Score, and area under the receiver operating characteristic curve (AUC). We achieve Precision and Recall values of 0.929 and 0.963, respectively. The classification accuracy of the proposed models is 0.963. Moreover, the F1-Score and AUC values are 0.962 and 0.987, respectively. These results are better a
The work described in this paper explores the intersection of computerscience, linguistics, and psychology in the realm of disinformation on social media. By analyzing textual content on Twitter, specifically propaga...
详细信息
Protein design aims to generate protein variants with targeted biological functions, which is significant in multiple biological areas, including enzyme reaction catalysis, vaccine design, and fluorescence intensity. ...
Protein design aims to generate protein variants with targeted biological functions, which is significant in multiple biological areas, including enzyme reaction catalysis, vaccine design, and fluorescence intensity. Protein design contains two paradigms: sequence generation and structure generation. Recently, EvoDiff [1] proposed a universal designing paradigm, combining structure and sequence generation using the diffusion framework, which improves the protein design efficiency.
暂无评论