咨询与建议

限定检索结果

文献类型

  • 726 篇 期刊文献
  • 203 篇 会议
  • 4 册 图书

馆藏范围

  • 933 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 656 篇 理学
    • 363 篇 物理学
    • 302 篇 数学
    • 99 篇 统计学(可授理学、...
    • 88 篇 生物学
    • 76 篇 化学
    • 53 篇 系统科学
    • 26 篇 地球物理学
  • 563 篇 工学
    • 277 篇 计算机科学与技术...
    • 210 篇 软件工程
    • 108 篇 电气工程
    • 95 篇 电子科学与技术(可...
    • 73 篇 力学(可授工学、理...
    • 69 篇 信息与通信工程
    • 66 篇 材料科学与工程(可...
    • 66 篇 生物工程
    • 64 篇 控制科学与工程
    • 53 篇 光学工程
    • 53 篇 化学工程与技术
    • 52 篇 生物医学工程(可授...
    • 38 篇 动力工程及工程热...
    • 34 篇 机械工程
    • 24 篇 仪器科学与技术
  • 87 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 32 篇 工商管理
  • 60 篇 医学
    • 43 篇 基础医学(可授医学...
    • 42 篇 临床医学
    • 22 篇 公共卫生与预防医...
  • 23 篇 农学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 14 篇 法学
  • 12 篇 教育学
  • 4 篇 哲学
  • 4 篇 文学
  • 3 篇 军事学
  • 2 篇 历史学
  • 1 篇 艺术学

主题

  • 23 篇 machine learning
  • 13 篇 topological mate...
  • 12 篇 fractional quant...
  • 8 篇 quantum algorith...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 convolutional ne...
  • 8 篇 geometric & topo...
  • 7 篇 deep learning
  • 7 篇 electronic struc...
  • 7 篇 higgs bosons
  • 7 篇 finite element m...
  • 7 篇 mathematical mod...
  • 6 篇 supersymmetric m...
  • 6 篇 hamiltonians
  • 6 篇 graphene
  • 6 篇 quantum computer...
  • 6 篇 stochastic syste...
  • 6 篇 topological phas...
  • 6 篇 accuracy

机构

  • 46 篇 division of phys...
  • 41 篇 department of ph...
  • 41 篇 faculty of scien...
  • 41 篇 departamento de ...
  • 41 篇 department for p...
  • 41 篇 department of ph...
  • 41 篇 yerevan physics ...
  • 41 篇 institute of phy...
  • 40 篇 kirchhoff-instit...
  • 40 篇 institute of phy...
  • 39 篇 dipartimento di ...
  • 39 篇 graduate school ...
  • 38 篇 department of ph...
  • 38 篇 department of ph...
  • 38 篇 department of ph...
  • 38 篇 lehrstuhl für ex...
  • 38 篇 west university ...
  • 38 篇 fakultät für phy...
  • 38 篇 tomsk state univ...
  • 38 篇 department of ph...

作者

  • 36 篇 m. klein
  • 33 篇 c. alexa
  • 33 篇 j. m. izen
  • 33 篇 s. veneziano
  • 33 篇 g. bella
  • 33 篇 j. strandberg
  • 33 篇 d. calvet
  • 33 篇 c. amelung
  • 33 篇 n. orlando
  • 33 篇 h. a. gordon
  • 33 篇 y. tayalati
  • 33 篇 g. spigo
  • 33 篇 v. chiarella
  • 33 篇 f. siegert
  • 33 篇 a. c. könig
  • 33 篇 r. ströhmer
  • 32 篇 f. buehrer
  • 32 篇 a. t. law
  • 32 篇 d. di valentino
  • 32 篇 c. gumpert

语言

  • 896 篇 英文
  • 37 篇 其他
检索条件"机构=Division of Applied Computing"
933 条 记 录,以下是1-10 订阅
排序:
A Nonparametric Split and Kernel-Merge Clustering Algorithm
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第9期5卷 4443-4457页
作者: Khan, Khurram ur Rehman, Atiq Khan, Adnan Naqvi, Syed Rameez Belhaouari, Samir Brahim Bermak, Amine Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Haripur22620 Pakistan Hamad Bin Khalifa University Division of Information and Computing Technology Doha34110 Qatar Comsats University Islamabad Wah47040 Pakistan
This work proposes a novel split and kernel-merge clustering (S-KMC), a nonparametric clustering algorithm that combines the strengths of hierarchical clustering, partitional clustering, and density-based clustering. ... 详细信息
来源: 评论
Explainable machine learning in materials science
收藏 引用
npj Computational Materials 2022年 第1期8卷 1951-1969页
作者: Xiaoting Zhong Brian Gallagher Shusen Liu Bhavya Kailkhura Anna Hiszpanski T.Yong-Jin Han Materials Science Division Lawrence Livermore National LaboratoryLivermoreCAUSA Center for Applied Scientific Computing Lawrence Livermore National LaboratoryLivermoreCAUSA
Machine learning models are increasingly used in materials studies because of their exceptional ***,the most accurate machine learning models are usually difficult to *** to this problem lie in explainable artificial ... 详细信息
来源: 评论
On Error-Based Step Size Control for Discontinuous Galerkin Methods for Compressible Fluid Dynamics
收藏 引用
应用数学与计算数学学报 2025年 第1期7卷 3-39页
作者: Hendrik Ranocha Andrew R.Winters Hugo Guillermo Castro Lisandro Dalcin Michael Schlottke-Lakemper Gregor J.Gassner Matteo Parsani Applied Mathematics University of HamburgBundesstr.5520146 HamburgGermany Department of Mathematics Applied Mathematics Linköping UniversityLinköpingSweden Extreme Computing Research Center(ECRC) Computer Electrical and Mathematical Science and Engineering Division(CEMSE)King Abdullah University of Science and Technology(KAUST)Thuwal 23955-6900Saudi Arabia Applied and Computational Mathematics RWTH Aachen UniversityAachenGermany High-Performance Computing Center Stuttgart University of StuttgartStuttgartGermany Department of Mathematics and Computer Science University of CologneCologneGermany Center for Data and Simulation Science University of CologneCologneGermany Extreme Computing Research Center(ECRC) Computer Electrical and Mathematical Science and Engineering Division(CEMSE)King Abdullah University of Science and Technology(KAUST)Thuwal 23955-6900Saudi Arabia Physical Science and Engineering Division(PSE) King Abdullah University of Science and Technology(KAUST)Thuwal 23955-6900Saudi Arabia
We study a temporal step size control of explicit Runge-Kutta(RK)methods for com-pressible computational fluid dynamics(CFD),including the Navier-Stokes equations and hyperbolic systems of conservation laws such as th... 详细信息
来源: 评论
Prediction of COVID-19 from Lung Scans Using Deep Learning  6
Prediction of COVID-19 from Lung Scans Using Deep Learning
收藏 引用
6th International Conference on Contemporary computing and Informatics, IC3I 2023
作者: Pramanik, Atreyi Sinha, Aashna Aluvala, Srinivas School of Applied and Life Sciences Division of Research and Innovation Uttaranchal University Dehradun India School of Computing Sciences S R University Telangana Hyderabad India
The COVID-19 pandemic has placed enormous demands on the world's healthcare systems, needing creative methods for the early and precise diagnosis of sickness. In this review study, we investigate the application o... 详细信息
来源: 评论
Optimizing Atomic Layer Deposition Using a Hybrid of Machine Learning Methods  9
Optimizing Atomic Layer Deposition Using a Hybrid of Machine...
收藏 引用
9th International Conference on Engineering and Emerging Technology, ICEET 2023
作者: Dibenedetto, Anthony Abuomar, Osama Yanguas-Gil, Angel Elam, Jeffrey W. Lewis University Department of Engineering Computing and Mathematical Sciences RomeovilleIL United States Argonne National Laboratory Applied Materials Division LemontIL United States
Atomic layer deposition (ALD) is a crucial technique in semiconductor miniaturization and high-precision applications. The quality of ALD processes directly affects the properties of the resulting thin films, leading ... 详细信息
来源: 评论
Efficient and interpretable graph network representation for angle-dependent properties applied to optical spectroscopy
收藏 引用
npj Computational Materials 2022年 第1期8卷 1434-1442页
作者: Tim Hsu Tuan Anh Pham Nathan Keilbart Stephen Weitzner James Chapman Penghao Xiao S.Roger Qiu Xiao Chen Brandon C.Wood Center for Applied Scientific Computing Lawrence Livermore National LaboratoryLivermoreCAUSA Materials Science Division Lawrence Livermore National LaboratoryLivermoreCAUSA Department of Physics and Atmospheric Science Dalhousie UniversityHalifaxNSCanada
Graph neural networks are attractive for learning properties of atomic structures thanks to their intuitive graph encoding of atoms and ***,conventional encoding does not include angular information,which is critical ... 详细信息
来源: 评论
RKDG Methods with Multi-resolution WENO Limiters for Solving Steady-State Problems on Triangular Meshes
收藏 引用
Communications on applied Mathematics and Computation 2024年 第3期6卷 1575-1599页
作者: Jun Zhu Chi-Wang Shu Jianxian Qiu State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles(NUAA) MIITNanjing University of Aeronautics and AstronauticsNanjing 210016JiangsuChina Division of Applied Mathematics Brown UniversityProvidenceRI 02912USA School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific ComputingXiamen UniversityXiamen 361005FujianChina
In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state pr... 详细信息
来源: 评论
Reduced Order Modeling for First Order Hyperbolic Systems with Application to Multiparameter Acoustic Waveform Inversion
收藏 引用
SIAM Journal on Imaging Sciences 2025年 第2期18卷 851-880页
作者: Borcea, Liliana Garnier, Josselin Mamonov, Alexander V. Zimmerling, Jorn Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States CMAP CNRS Ecole Polytechnique Institut Polytechnique de Paris Palaiseau91120 France Department of Mathematics University of Houston HoustonTX77204-3008 United States Department of Information Technology Division of Scientific Computing Uppsala Universitet Uppsala75105 Sweden
Waveform inversion seeks to estimate an inaccessible heterogeneous medium from data gathered by sensors that emit probing signals and measure the generated waves. It is an inverse problem for a second order wave equat... 详细信息
来源: 评论
EXTENDED GALERKIN NEURAL NETWORK APPROXIMATION OF SINGULAR VARIATIONAL PROBLEMS WITH ERROR CONTROL
arXiv
收藏 引用
arXiv 2024年
作者: Ainsworth, Mark Dong, Justin Division of Applied Mathematics Brown University United States Center for Applied Scientific Computing Lawrence Livermore National Laboratory United States
We present extended Galerkin neural networks (xGNN), a variational framework for approximating general boundary value problems (BVPs) with error control. The main contributions of this work are (1) a rigorous theory g... 详细信息
来源: 评论
A Novel Feature Extraction Technique for ECG Arrhythmia Classification Using ML
A Novel Feature Extraction Technique for ECG Arrhythmia Clas...
收藏 引用
2023 IEEE International Conference on Dependable, Autonomic and Secure computing, 2023 International Conference on Pervasive Intelligence and computing, 2023 International Conference on Cloud and Big Data computing, 2023 International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2023
作者: Rahman, Mohammad Mominur Islam, Ashhadul Charni, Skander Bensmail, Halima Hilbel, Thomas Belhaouari, Samir Brahim College of Science and Engineering Hamad Bin Khalifa University Division of Information and Computing Technology Doha Qatar College of Engineering Qatar University Doha Qatar Doha Qatar Westphalian University of Applied Sciences Department of Electrical Engineering and Applied Sciences Gelsenkirchen Germany
Feature extraction is the process of transforming raw data into features that are more relevant for machine learning algorithms. The goal of feature extraction is to find a set of features that can be used to accurate... 详细信息
来源: 评论