咨询与建议

限定检索结果

文献类型

  • 174 篇 期刊文献
  • 81 篇 会议

馆藏范围

  • 255 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 171 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 40 篇 生物医学工程(可授...
    • 36 篇 光学工程
    • 33 篇 生物工程
    • 27 篇 电气工程
    • 26 篇 信息与通信工程
    • 24 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 11 篇 仪器科学与技术
    • 10 篇 机械工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
    • 7 篇 化学工程与技术
    • 5 篇 安全科学与工程
  • 109 篇 理学
    • 42 篇 物理学
    • 41 篇 生物学
    • 38 篇 数学
    • 22 篇 统计学(可授理学、...
    • 12 篇 化学
  • 38 篇 管理学
    • 21 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 36 篇 医学
    • 33 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 16 篇 公共卫生与预防医...
    • 14 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 教育学
  • 4 篇 农学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 11 篇 deep learning
  • 9 篇 artificial intel...
  • 8 篇 machine learning
  • 6 篇 internet of thin...
  • 6 篇 object detection
  • 6 篇 magnetic resonan...
  • 6 篇 training
  • 5 篇 image segmentati...
  • 5 篇 medical imaging
  • 4 篇 optimization
  • 4 篇 contrastive lear...
  • 4 篇 estimation
  • 4 篇 accuracy
  • 4 篇 data models
  • 3 篇 covid-19
  • 3 篇 data privacy
  • 3 篇 safety
  • 3 篇 electroencephalo...
  • 3 篇 resource managem...
  • 3 篇 real-time system...

机构

  • 7 篇 department of qu...
  • 7 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 division of lang...
  • 7 篇 department of ar...
  • 5 篇 sage bionetworks...
  • 5 篇 lab crestview ra...
  • 5 篇 centre for medic...
  • 5 篇 sheikh zayed ins...
  • 5 篇 division of ai c...
  • 5 篇 department of ra...
  • 5 篇 athinoula a mart...
  • 5 篇 department of ap...
  • 5 篇 university of pe...
  • 5 篇 precisionfda u.s...
  • 5 篇 mcgill universit...
  • 5 篇 heidelberg
  • 4 篇 yale university ...
  • 4 篇 department of ra...
  • 4 篇 department of ra...

作者

  • 13 篇 kofler florian
  • 10 篇 bakas spyridon
  • 10 篇 menze bjoern
  • 8 篇 ezhov ivan
  • 8 篇 linguraru marius...
  • 8 篇 chung kyungyong
  • 7 篇 calabrese evan
  • 7 篇 kim yeachan
  • 7 篇 kyungyong chung
  • 7 篇 lee sangkeun
  • 7 篇 park jun-hyung
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 moawad ahmed w.
  • 5 篇 li hongwei bran
  • 5 篇 reinke annika
  • 5 篇 cimini beth a.
  • 5 篇 meier zeke
  • 5 篇 wang chunhao
  • 5 篇 glocker ben

语言

  • 221 篇 英文
  • 33 篇 其他
  • 2 篇 朝鲜文
  • 1 篇 德文
检索条件"机构=Division of Computer Engineering and AI"
255 条 记 录,以下是1-10 订阅
排序:
YOLO Based Crack Detection of Structures with Edge Detection Process
收藏 引用
Transactions of the Korean Institute of Electrical Engineers 2024年 第12期73卷 2391-2397页
作者: Kim, Ji-Soo Chung, Kyungyong Division of AI Computer Science and Engineering Kyonggi University Korea Republic of
In this paper, we propose an algorithm that combines the YOLO model with edge detection techniques to effectively detect cracks occurring in structures. Existing manual inspection methods are time-consuming, costly, a... 详细信息
来源: 评论
Research on Memory-Efficient Approach to Sleep Quality Estimation for Edge Devices  15
Research on Memory-Efficient Approach to Sleep Quality Estim...
收藏 引用
15th International Conference on Information and Communication Technology Convergence, ICTC 2024
作者: Kang, Seungeun Kim, Jin Kim, Namgi Kyonggi University Division of Ai Computer Science and Engineering Suwon Korea Republic of
Lifelog data has become easier to collect due to the development of wearable technology and IoT devices, and its importance has increased with the growth of the healthcare industry. In particular, personalized service... 详细信息
来源: 评论
Explainable Anomaly Detection Using Vision Transformer Based SVDD
收藏 引用
computers, Materials & Continua 2023年 第3期74卷 6573-6586页
作者: Ji-Won Baek Kyungyong Chung Department of Computer Science Kyonggi UniversitySuwon-si 16227Korea Division of AI Computer Science and Engineering Kyonggi UniversitySuwon-si 16227Korea
Explainable ai extracts a variety of patterns of data in the learning process and draws hidden information through the discovery of semantic *** is possible to offer the explainable basis of decision-making for infere... 详细信息
来源: 评论
Dynamic Framerate SlowFast Network for Improving Autonomous Driving Performance
收藏 引用
IEIE Transactions on Smart Processing and Computing 2023年 第3期12卷 261-268页
作者: Jeon, Byeong-Uk Chung, Kyungyong Department of Computer Science Kyonggi University Suwon Korea Republic of Division of AI Computer Science and Engineering Kyonggi University Suwon Korea Republic of
computer vision technology is used for autonomous driving and road traffic safety. Accordingly, studies on deep learning models that detect and analyze objects through images or videos are ongoing. On the other hand, ... 详细信息
来源: 评论
YOLO based Object Features Detection using Non-Local Means Denoising and Data Augmentation
收藏 引用
Transactions of the Korean Institute of Electrical Engineers 2022年 第9期71卷 1280-1285页
作者: Park, Geon Kang, Ye-Yeon Kim, Gyu-Il Chung, Kyungyong Division of AI Computer Science and Engineering Kyonggi University Korea Republic of
When fruits are harvested in farms, most of them go through a manual sorting process and classify and distribute decomposed fruits. However, there is a limit to manually classifying large amounts in a situation where ... 详细信息
来源: 评论
Multiple-Object Tracking Using Histogram Stamp Extraction in CCTV Environments
收藏 引用
computers, Materials & Continua 2023年 第12期77卷 3619-3635页
作者: Ye-Yeon Kang Geon Park Hyun Yoo Kyungyong Chung Division of AI Computer Science and Engineering Kyonggi UniversitySuwon16227Korea Contents Convergence Software Research Institute Kyonggi UniversitySuwon16227Korea
Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an *** technology may be effective in identifying the same pers... 详细信息
来源: 评论
Research on Building K-Contents Specialized Text2Image Pipeline  27
Research on Building K-Contents Specialized Text2Image Pipel...
收藏 引用
27th International Conference on Advanced Communications Technology, ICACT 2025
作者: Kang, Seungeun Lee, Dahyun Han, Sangbum Lim, Seokjae Kim, Namgi Division of AI Computer Science and Engineering Kyonggi University Suwon154-42 Korea Republic of AI Tech Team LOTTE INNOVATE Seoul179 Korea Republic of
Recently, there has been a lot of research on the Text2Image generative model as social and technological interest in generative models has increased. In addition, the interest in Korean contents (K-Contnets) has incr... 详细信息
来源: 评论
Enhancing Radiology Report Interpretation with Large-Scale Language Models: A Two-Stage Fine-Tuning Approach  27
Enhancing Radiology Report Interpretation with Large-Scale L...
收藏 引用
27th International Conference on Advanced Communications Technology, ICACT 2025
作者: Pi, Sun-Woo Park, Myeong-Soo Lee, Byoung-Dai Department of Computer Science Graduate School Kyonggi University Suwon Korea Republic of Division of AI and Computer Engineering Kyonggi University Suwon Korea Republic of
Radiology reports contain complex medical terminology and specialized knowledge, making them difficult for both patients and medical professionals to interpret. This study aims to address this challenge by developing ... 详细信息
来源: 评论
Augmented and End-to-End Models for Defect Classification of Structures  18
Augmented and End-to-End Models for Defect Classification of...
收藏 引用
18th ACM International Conference on Distributed and Event-Based Systems, DEBS 2024
作者: Kim, Gyu-Il Chung, Kyungyong Department of Computer Science Kyonggi University Suwon Korea Republic of Division of AI Computer Science and Engineering Kyonggi University Suwon Korea Republic of
This paper proposes an automated defect classification model for the safety diagnosis and maintenance of concrete structures. Traditional manual classification methods are time-consuming and rely on subjective judgmen... 详细信息
来源: 评论
Search and Recommendation Systems with Metadata Extensions  26
Search and Recommendation Systems with Metadata Extensions
收藏 引用
26th International Conference on Advanced Communications Technology, ICACT 2024
作者: Kim, Woo-Hyeon Kim, Joo-Chang Kyonggi University Division of Ai Computer Science and Computer Engineering Korea Republic of Contents Convergence Software Research Institute Kyonggi University Korea Republic of
This paper proposes an ai-based video metadata extension model to overcome the limitations of video search and recommendation systems in the multimedia industry. Current video searches and recommendations utilize pre-... 详细信息
来源: 评论