The rapid growth of Internet of Things (IoT) networks has introduced significant security challenges, with botnet attacks being one of the most prevalent threats. These attacks exploit vulnerabilities in IoT devices, ...
详细信息
The rapid growth of Internet of Things (IoT) networks has introduced significant security challenges, with botnet attacks being one of the most prevalent threats. These attacks exploit vulnerabilities in IoT devices, leading to severe disruptions and damage to critical infrastructures. Detecting botnet attacks in IoT environments is challenging due to the large volume of data, the dynamic nature of traffic, and the diverse attack patterns. To address these issues, we propose a novel approach called Walrus Optimized Ensemble Deep Learning for Anomaly-Based Recognition Classifier (WOAEDL-ABRC), which leverages a combination of advanced machine learning techniques for effective botnet detection. The methodology of this research involves four key components: (1) data preprocessing through min–max normalization to scale the features appropriately, (2) feature selection using the social cooperation search algorithm (SCSA) to identify the most informative attributes, (3) an ensemble deep learning model combining convolutional autoencoder (CAE), bidirectional gated recurrent unit (BiGRU), and deep belief network (DBN) for robust anomaly detection, and (4) hyperparameter optimization using the Walrus Optimization Algorithm (WAOA), which fine-tunes the model parameters for optimal performance. This ensemble approach ensures that the model benefits from the strengths of each individual technique while mitigating the weaknesses of others. The dataset used for this research includes network traffic data from IoT environments, consisting of various botnet attack scenarios and normal traffic patterns. The data undergoes extensive preprocessing and feature selection to reduce dimensionality and enhance the model’s performance. The implementation is carried out in Python using TensorFlow for deep learning, with the WAOA applied to optimize hyperparameters. The results demonstrate the effectiveness of the WOAEDL-ABRC in detecting botnet attacks, achieving superior accuracy, precision
The automated classification of immune cells plays a vital role in advancing immunological research, diagnostics, and therapeutic monitoring. This paper leverages machine learning and image processing techniques to ac...
详细信息
This paper presents a decentralized multi-agent system for intelligent traffic management in urban environments, where each agent represents a traffic light controller at an intersection. The proposed system leverages...
详细信息
Early detection of Alzheimer's disease (AD) is crucial for timely intervention and slowing its progression. This research leverages neuroimaging-based machine learning to classify cognitive impairment levels using...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Medical vision-language pretraining (VLP) that leverages naturally-paired medical image-report data is crucial for medical image analysis. However, existing methods struggle to accurately characterize associations bet...
详细信息
Unmanned Aerial Vehicle (UAV) networks play an important role in different application areas such as military surveillance, emergency services, and infrastructure. However, these networks face significant challenges s...
详细信息
Early detection of colorectal cancer is important as it is one of the most common and deadliest types of cancer worldwide. This project proposes an image classification model based on deep learning architecture that c...
详细信息
In recent years, complex machine learning models have been widely introduced in various industrial fields due to their high accuracy. However, their increasing complexity has been a major obstacle to their implementat...
详细信息
Centralized baseband processing (CBP) is required to achieve the full potential of massive multiple-input multiple-output (MIMO) systems. However, due to the large number of antennas, CBP suffers from two major issues...
详细信息
暂无评论