咨询与建议

限定检索结果

文献类型

  • 339 篇 期刊文献
  • 65 篇 会议
  • 1 册 图书

馆藏范围

  • 405 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 251 篇 工学
    • 136 篇 计算机科学与技术...
    • 114 篇 软件工程
    • 47 篇 生物医学工程(可授...
    • 46 篇 生物工程
    • 40 篇 信息与通信工程
    • 36 篇 光学工程
    • 31 篇 电气工程
    • 28 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 材料科学与工程(可...
    • 16 篇 安全科学与工程
    • 14 篇 控制科学与工程
    • 14 篇 核科学与技术
    • 12 篇 仪器科学与技术
  • 247 篇 理学
    • 124 篇 物理学
    • 81 篇 数学
    • 58 篇 生物学
    • 35 篇 化学
    • 31 篇 统计学(可授理学、...
    • 21 篇 地球物理学
    • 14 篇 天文学
    • 12 篇 系统科学
  • 48 篇 医学
    • 42 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 22 篇 公共卫生与预防医...
    • 15 篇 药学(可授医学、理...
  • 36 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 12 篇 法学
    • 12 篇 社会学
  • 11 篇 农学
  • 6 篇 经济学
  • 4 篇 教育学
  • 1 篇 军事学

主题

  • 18 篇 machine learning
  • 10 篇 gamma rays
  • 6 篇 federated learni...
  • 6 篇 artificial intel...
  • 5 篇 inverse problems
  • 5 篇 deep learning
  • 5 篇 quantum algorith...
  • 5 篇 image segmentati...
  • 5 篇 electronic struc...
  • 5 篇 photons
  • 5 篇 telescopes
  • 4 篇 reinforcement le...
  • 4 篇 gamma ray astron...
  • 4 篇 anomaly detectio...
  • 4 篇 calorimeters
  • 4 篇 dark matter (ast...
  • 4 篇 training
  • 3 篇 phase space meth...
  • 3 篇 magnetic resonan...
  • 3 篇 big data

机构

  • 30 篇 department of ph...
  • 28 篇 hiroshima astrop...
  • 24 篇 the oskar klein ...
  • 24 篇 dipartimento di ...
  • 23 篇 institut für ast...
  • 22 篇 department of ph...
  • 22 篇 dipartimento di ...
  • 22 篇 istituto naziona...
  • 21 篇 inaf-istituto di...
  • 21 篇 consorzio interu...
  • 20 篇 istituto naziona...
  • 19 篇 laboratoire lepr...
  • 19 篇 istituto naziona...
  • 18 篇 dipartimento di ...
  • 18 篇 berkeley institu...
  • 18 篇 istituto naziona...
  • 17 篇 nasa goddard spa...
  • 17 篇 institució catal...
  • 16 篇 physics division...
  • 15 篇 science institut...

作者

  • 24 篇 e. j. siskind
  • 24 篇 r. bellazzini
  • 23 篇 j. b. thayer
  • 23 篇 p. spinelli
  • 22 篇 p. a. caraveo
  • 22 篇 m. kuss
  • 22 篇 s. guiriec
  • 22 篇 s. rainò
  • 22 篇 p. fusco
  • 22 篇 m. e. monzani
  • 21 篇 i. a. grenier
  • 21 篇 p. f. michelson
  • 21 篇 h. takahashi
  • 21 篇 s. ciprini
  • 21 篇 r. rando
  • 21 篇 a. reimer
  • 21 篇 c. cecchi
  • 20 篇 m. razzano
  • 20 篇 l. latronico
  • 19 篇 r. buehler

语言

  • 372 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=Division of Computing and Data Science"
405 条 记 录,以下是101-110 订阅
排序:
Improving generative model-based unfolding with Schrödinger bridges
收藏 引用
Physical Review D 2024年 第7期109卷 076011-076011页
作者: Sascha Diefenbacher Guan-Horng Liu Vinicius Mikuni Benjamin Nachman Weili Nie Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology Atlanta Georgia 30332 USA National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA Machine Learning Research Group NVIDIA Research
Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area; one based on discriminative models and one ba... 详细信息
来源: 评论
AI ensemble for signal detection of higher order gravitational wave modes of quasi-circular, spinning, non-precessing binary black hole mergers
arXiv
收藏 引用
arXiv 2023年
作者: Tian, Minyang Huerta, E.A. Zheng, Huihuo Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Department of Physics & NCSA University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Computer Science The University of Chicago ChicagoIL60637 United States Leadership Computing Facility Argonne National Laboratory LemontIL60439 United States
We introduce spatiotemporal-graph models that concurrently process data from the twin advanced LIGO detectors and the advanced Virgo detector. We trained these AI classifiers with 2.4 million IMRPhenomXPHM waveforms t... 详细信息
来源: 评论
YOLOO: You Only Learn from Others Once
arXiv
收藏 引用
arXiv 2024年
作者: Gu, Lipeng Wei, Mingqiang Yan, Xuefeng Zhu, Dingkun Zhao, Wei Xie, Haoran Liu, Yong-Jin School of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Shenzhen Institute of Research Nanjing University of Aeronautics and Astronautics Shenzhen China The School of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China The Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing China The School of Computer Science Jiangsu University of Technology Changzhou China The Division of Artificial Intelligence School of Data Science Lingnan University New Territories Hong Kong The MOE-Key Laboratory of Pervasive Computing Department of Computer Science and Technology Tsinghua University Beijing China
Multi-modal 3D multi-object tracking (MOT) typically necessitates extensive computational costs of deep neural networks (DNNs) to extract multi-modal representations. In this paper, we propose an intriguing question: ... 详细信息
来源: 评论
Towards Quantum Federated Learning
arXiv
收藏 引用
arXiv 2023年
作者: Ren, Chao Yan, Rudai Zhu, Huihui Yu, Han Xu, Minrui Shen, Yuan Xu, Yan Xiao, Ming Dong, Zhao Yang Skoglund, Mikael Niyato, Dusit Kwek, Leong Chuan School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Sweden School of Electrical and Electronic Engineering Nanyang Technological University Singapore College of Computing and Data Science Nanyang Technological University Singapore Division of Information Science and Engineering KTH Royal Institute of Technology Sweden City University of Hong Kong China Center for Quantum Technologies National University of Singapore Singapore Nanyang Technological University Singapore
Quantum Federated Learning (QFL) is an emerging interdisciplinary field that merges the principles of Quantum computing (QC) and Federated Learning (FL), with the goal of leveraging quantum technologies to enhance pri... 详细信息
来源: 评论
Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare data Representation Learning
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Chun-Kai Hsieh, Yi-Hsien Chien, Ta-Jung Chien, Li-Cheng Sun, Shao-Hua Su, Tung-Hung Kao, Jia-Horng Lin, Che Taiwan Data Science Degree Program NTU Taiwan Department of Electrical Engineering NTU Taiwan Division of Gastroenterology and Hepatology NTU Hospital Taiwan Hepatitis Research Center NTU Hospital Taiwan Graduate Institute of Clinical Medicine College of Medicine NTU Taiwan Center for Advanced Computing and Imaging in Biomedicine NTU Taiwan Smart Medicine and Health Informatics Program NTU Taiwan
Multivariate time series (MTS) data, when sampled irregularly and asynchronously, often present extensive missing values. Conventional methodologies for MTS analysis tend to rely on temporal embeddings based on timest... 详细信息
来源: 评论
Magnons from time-dependent density-functional perturbation theory and the noncollinear Hubbard formulation
arXiv
收藏 引用
arXiv 2024年
作者: Binci, Luca Marzari, Nicola Timrov, Iurii École Polytechnique Fédérale de Lausanne LausanneCH-1015 Switzerland Department of Materials Science & Engineering University of California Berkeley BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Center for Scientific Computing Theory and Data Paul Scherrer Institut Villigen PSI5232 Switzerland
Spin excitations play a fundamental role in understanding magnetic properties of materials, and have significant technological implications for magnonic devices. However, accurately modeling these in transition-metal ... 详细信息
来源: 评论
XAI Based Cattle Identification with YOLO and SIFT Technique
XAI Based Cattle Identification with YOLO and SIFT Technique
收藏 引用
Future Machine Learning and data science (FMLDS), IEEE International Conference on
作者: Aashu Katharria Millie Pant Kusum Deep Indu Devi Mehta Family School of Data Science and Artificial Intelligence Indian Institute of Technology Roorkee Roorkee Uttarakhand India Applied Mathematics and Scientific Computing Indian Institute of Technology Roorkee Roorkee Uttarakhand India Department of Mathematics Indian Institute of Technology Roorkee Roorkee Uttarakhand India Livestock Production Management Division ICAR-National Dairy Research Institute Karnal Haryana India
In precision livestock farming, accurate cattle identification is essential for enhancing animal welfare, health monitoring, and productivity, while also supporting traceability and minimizing false insurance claims. ... 详细信息
来源: 评论
Explainable Enrichment-Driven GrAph Reasoner (EDGAR) for Large Knowledge Graphs with Applications in Drug Repurposing
Explainable Enrichment-Driven GrAph Reasoner (EDGAR) for Lar...
收藏 引用
IEEE International Conference on Big data
作者: Olawumi Olasunkanmi Evan Morris Yaphet Kebede Harlin Lee Stanley C. Ahalt Alexander Tropsha Chris Bizon Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill NC USA Renaissance Computing Institute University of North Carolina at Chapel Hill Chapel Hill NC USA School of Data Science and Society University of North Carolina at Chapel Hill Chapel Hill NC USA Division of Chemical Biology and Medicinal Chemistry UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC USA
Knowledge graphs (KGs) represent the connections and relationships between real-world entities. We propose a link prediction framework on KGs named Enrichment-Driven GrAph Reasoner (EDGAR) that infers new edges by min... 详细信息
来源: 评论
Narrative Analysis of True Crime Podcasts With Knowledge Graph-Augmented Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Leng, Xinyi Liang, Jason Mauro, Jack Wang, Xu Chapman, James Bertozzi, Andrea L. Lin, Junyuan Chen, Bohan Ye, Chenchen Daniel, Temple Brantingham, P. Jeffrey Carleton College Department of Mathematics and Statistics United States Claremont McKenna College Department of Mathematical Sciences United States University of California Los Angeles Department of Mathematics United States Loyola Marymount University Department of Mathematics Statistics and Data Science United States California Institute of Technology Computing + Mathematical Sciences Division of Engineering and Applied Science United States University of California Los Angeles Department of Computer Science United States University of California Los Angeles Department of Anthropology United States
Narrative data spans all disciplines and provides a coherent model of the world to the reader or viewer. Recent advancement in machine learning and Large Language Models (LLMs) have enable great strides in analyzing n... 详细信息
来源: 评论
RSMA-assisted SHAPTINs: secrecy performance under imperfect hardware and channel estimation errors
收藏 引用
Neural computing and Applications 2024年 1-18页
作者: Feng, Zhou Kefeng, Guo Jian, Cheng Sunder Ali, Khowaja Kapal, Dev Reddy, Gadekallu Thippa Hussam Al, Hamadi School of Information Technology Yancheng Institute of Technology Yancheng224051 China School of Space Information Space Engineering University Beijing101407 China College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics Nanjing210016 China Faculty of Computing Digital and Data Technological University Dublin DublinD07EWV4 Ireland ADAPT Centre and Department of Computer Science Munster Technological University Cork BishopstownT12 P928 Ireland Department of institute of intelligent systems University of Johannesburg Auckland Park Johannesburg2006 South Africa Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Punjab Rajpura140401 India Division of Research and Development Lovely Professional University Phagwara144001 India College of Engineering and IT College of Engineering and IT University of Dubai PO Box 14143 Dubai United Arab Emirates
Satellite high aerial platform terrestrial integrated networks have become the hot topic these years, which have been regarded as the major part of the intelligence of things for future networks. During this work, we ... 详细信息
来源: 评论