咨询与建议

限定检索结果

文献类型

  • 339 篇 期刊文献
  • 65 篇 会议
  • 1 册 图书

馆藏范围

  • 405 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 251 篇 工学
    • 136 篇 计算机科学与技术...
    • 114 篇 软件工程
    • 47 篇 生物医学工程(可授...
    • 46 篇 生物工程
    • 40 篇 信息与通信工程
    • 36 篇 光学工程
    • 31 篇 电气工程
    • 28 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 材料科学与工程(可...
    • 16 篇 安全科学与工程
    • 14 篇 控制科学与工程
    • 14 篇 核科学与技术
    • 12 篇 仪器科学与技术
  • 247 篇 理学
    • 124 篇 物理学
    • 81 篇 数学
    • 58 篇 生物学
    • 35 篇 化学
    • 31 篇 统计学(可授理学、...
    • 21 篇 地球物理学
    • 14 篇 天文学
    • 12 篇 系统科学
  • 48 篇 医学
    • 42 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 22 篇 公共卫生与预防医...
    • 15 篇 药学(可授医学、理...
  • 36 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 12 篇 法学
    • 12 篇 社会学
  • 11 篇 农学
  • 6 篇 经济学
  • 4 篇 教育学
  • 1 篇 军事学

主题

  • 18 篇 machine learning
  • 10 篇 gamma rays
  • 6 篇 federated learni...
  • 6 篇 artificial intel...
  • 5 篇 inverse problems
  • 5 篇 deep learning
  • 5 篇 quantum algorith...
  • 5 篇 image segmentati...
  • 5 篇 electronic struc...
  • 5 篇 photons
  • 5 篇 telescopes
  • 4 篇 reinforcement le...
  • 4 篇 gamma ray astron...
  • 4 篇 anomaly detectio...
  • 4 篇 calorimeters
  • 4 篇 dark matter (ast...
  • 4 篇 training
  • 3 篇 phase space meth...
  • 3 篇 magnetic resonan...
  • 3 篇 big data

机构

  • 30 篇 department of ph...
  • 28 篇 hiroshima astrop...
  • 24 篇 the oskar klein ...
  • 24 篇 dipartimento di ...
  • 23 篇 institut für ast...
  • 22 篇 department of ph...
  • 22 篇 dipartimento di ...
  • 22 篇 istituto naziona...
  • 21 篇 inaf-istituto di...
  • 21 篇 consorzio interu...
  • 20 篇 istituto naziona...
  • 19 篇 laboratoire lepr...
  • 19 篇 istituto naziona...
  • 18 篇 dipartimento di ...
  • 18 篇 berkeley institu...
  • 18 篇 istituto naziona...
  • 17 篇 nasa goddard spa...
  • 17 篇 institució catal...
  • 16 篇 physics division...
  • 15 篇 science institut...

作者

  • 24 篇 e. j. siskind
  • 24 篇 r. bellazzini
  • 23 篇 j. b. thayer
  • 23 篇 p. spinelli
  • 22 篇 p. a. caraveo
  • 22 篇 m. kuss
  • 22 篇 s. guiriec
  • 22 篇 s. rainò
  • 22 篇 p. fusco
  • 22 篇 m. e. monzani
  • 21 篇 i. a. grenier
  • 21 篇 p. f. michelson
  • 21 篇 h. takahashi
  • 21 篇 s. ciprini
  • 21 篇 r. rando
  • 21 篇 a. reimer
  • 21 篇 c. cecchi
  • 20 篇 m. razzano
  • 20 篇 l. latronico
  • 19 篇 r. buehler

语言

  • 372 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=Division of Computing and Data Science"
405 条 记 录,以下是151-160 订阅
排序:
Learned Local Attention Maps for Synthesising Vessel Segmentations from T2 MRI
arXiv
收藏 引用
arXiv 2023年
作者: Deo, Yash Bonazzola, Rodrigo Dou, Haoran Xia, Yan Wei, Tianyou Ravikumar, Nishant Frangi, Alejandro F. Lassila, Toni School of Computing and School of Medicine University of Leeds Leeds United Kingdom Leeds United Kingdom Alan Turing Institute London United Kingdom Electrical Engineering and Cardiovascular Sciences Department KU Leuven Leuven Belgium Division of Informatics Imaging and Data Science Schools of Computer Science and Health Sciences University of Manchester Manchester United Kingdom
Magnetic resonance angiography (MRA) is an imaging modality for visualising blood vessels. It is useful for several diagnostic applications and for assessing the risk of adverse events such as haemorrhagic stroke (res... 详细信息
来源: 评论
Online-compatible unsupervised nonresonant anomaly detection
收藏 引用
Physical Review D 2022年 第5期105卷 055006-055006页
作者: Vinicius Mikuni Benjamin Nachman David Shih National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA NHETC Department of Physics & Astronomy Rutgers University Piscataway New Jersey 08854 USA
There is a growing need for anomaly detection methods that can broaden the search for new particles in a model-agnostic manner. Most proposals for new methods focus exclusively on signal sensitivity. However, it is no... 详细信息
来源: 评论
Exploring the exact limits of the real-time equation-of-motion coupled cluster cumulant Green’s functions
arXiv
收藏 引用
arXiv 2024年
作者: Peng, Bo Pathak, Himadri Panyala, Ajay Vila, Fernando D. Rehr, John J. Kowalski, Karol Physical and Computational Science Directorate Pacific Northwest National Laboratory RichlandWA99354 United States Advanced Computing Mathematics and Data Division Pacific Northwest National Laboratory RichlandWA99354 United States Department of Physics University of Washington SeattleWA98195 United States
In this paper, we analyze the properties of the recently proposed real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green’s function approach [J. Chem. Phys. 2020, 152, 174113]. We specifically focus ... 详细信息
来源: 评论
Adaptively Lossy Image Compression for Onboard Processing
Adaptively Lossy Image Compression for Onboard Processing
收藏 引用
IEEE Aerospace Conference
作者: Justin Goodwill David Wilson Sebastian Sabogal Alan D. George Christopher Wilson NSF Center for Space High-Performance and Resilient Computing (SHREC) University of Pittsburgh 4420 Bayard St Suite 560 Pittsburgh PA Software Engineering Division NASA Goddard Space Flight Center Science Data Processing Branch Code 587 8800 Greenbelt Rd Greenbelt MD
More efficient image-compression codecs are an emerging requirement for spacecraft because increasingly complex, onboard image sensors can rapidly saturate downlink bandwidth of communication transceivers. While these...
来源: 评论
State-space models are accurate and efficient neural operators for dynamical systems
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Zheyuan Daryakenari, Nazanin Ahmadi Shen, Qianli Kawaguchi, Kenji Em Karniadakis, George Department of Computer Science National University of Singapore Singapore119077 Singapore Center for Biomedical Engineering School of Engineering Brown University ProvidenceRI02912 United States Division of Applied Mathematics Brown University ProvidenceRI02912 United States Advanced Computing Mathematics and Data Division Pacific Northwest National Laboratory RichlandWA United States
Physics-informed machine learning (PIML) has emerged as a promising alternative to classical methods for predicting dynamical systems, offering faster and more generalizable solutions. However, existing models, includ... 详细信息
来源: 评论
Improving solution accuracy and convergence for stochastic physics parameterizations with colored noise
arXiv
收藏 引用
arXiv 2019年
作者: Stinis, Panos Lei, Huan Li, Jing Wan, Hui Advanced Computing Mathematics and Data Division Pacific Northwest National Laboratory RichlandWA99354 United States Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory RichlandWA99354 United States Department of Computational Mathematics Science and Engineering Department of Statistics and Probability Michigan State University East LansingMI48824 United States
Stochastic parameterizations are used in numerical weather prediction and climate modeling to help capture the uncertainty in the simulations and improve their statistical properties. Convergence issues can arise when... 详细信息
来源: 评论
Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws
arXiv
收藏 引用
arXiv 2021年
作者: Ranocha, Hendrik Schlottke-Lakemper, Michael Chan, Jesse Rueda-Ramírez, Andrés M. Winters, Andrew R. Hindenlang, Florian Gassner, Gregor J. Applied Mathematics University of Münster Germany High-Performance Computing Center Stuttgart University of Stuttgart Germany Computational and Applied Mathematics Rice University United States Department of Mathematics and Computer Science University of Cologne Germany Computational Mathematics Division of Applied Mathematics Linköping University Sweden Max Planck Institute for Plasma Physics NMPP division Garching Germany Department of Mathematics and Computer Science Center for Data and Simulation Science University of Cologne Germany
Many modern discontinuous Galerkin (DG) methods for conservation laws make use of summation by parts operators and flux differencing to achieve kinetic energy preservation or entropy stability. While these techniques ... 详细信息
来源: 评论
Score-Based Physics-Informed Neural Networks for High-Dimensional Fokker-Planck Equations
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Zheyuan Zhang, Zhongqiang Em Karniadakis, George Kawaguchi, Kenji Department of Computer Science National University of Singapore Singapore119077 Singapore Department of Mathematical Sciences Worcester Polytechnic Institute WorcesterMA01609 United States Division of Applied Mathematics Brown University USA ProvidenceRI02912 United States Advanced Computing Mathematics and Data Division Pacific Northwest National Laboratory RichlandWA United States
The Fokker-Planck (FP) equation is a foundational partial differential equation (PDE) in stochastic processes involving Brownian motions. However, the curse of dimensionality (CoD) poses a formidable challenge when de... 详细信息
来源: 评论
Environment scan of generative AI infrastructure for clinical and translational science
Npj health systems
收藏 引用
Npj health systems 2025年 第1期2卷 4页
作者: Betina Idnay Zihan Xu William G Adams Mohammad Adibuzzaman Nicholas R Anderson Neil Bahroos Douglas S Bell Cody Bumgardner Thomas Campion Mario Castro James J Cimino I Glenn Cohen David Dorr Peter L Elkin Jungwei W Fan Todd Ferris David J Foran David Hanauer Mike Hogarth Kun Huang Jayashree Kalpathy-Cramer Manoj Kandpal Niranjan S Karnik Avnish Katoch Albert M Lai Christophe G Lambert Lang Li Christopher Lindsell Jinze Liu Zhiyong Lu Yuan Luo Peter McGarvey Eneida A Mendonca Parsa Mirhaji Shawn Murphy John D Osborne Ioannis C Paschalidis Paul A Harris Fred Prior Nicholas J Shaheen Nawar Shara Ida Sim Umberto Tachinardi Lemuel R Waitman Rosalind J Wright Adrian H Zai Kai Zheng Sandra Soo-Jin Lee Bradley A Malin Karthik Natarajan W Nicholson Price Ii Rui Zhang Yiye Zhang Hua Xu Jiang Bian Chunhua Weng Yifan Peng Department of Biomedical Informatics Columbia University Irving Medical Center New York NY USA. Department of Population Health Sciences Weill Cornell Medicine New York NY USA. Department of Pediatrics Boston Medical Center Boston MA USA Chobanian & Avedisian School of Medicine Boston University Boston MA USA. Oregon Clinical and Translational Research Institute Oregon Health and Science University Portland OR USA. Department of Public Health Sciences University of California Davis Davis CA USA. Keck School of Medicine University of Southern California Los Angeles CA USA. Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA USA. Department of Pathology and Laboratory Medicine University of Kentucky College of Medicine Lexington KY USA. Clinical and Translational Science Center Weill Cornell Medicine New York NY USA. Division of Pulmonary Critical Care and Sleep Medicine University of Kansas School of Medicine Kansas City KS USA. Department of Biomedical Informatics and Data Science Heersink School of Medicine University of Alabama Birmingham AL USA. Harvard Law School Petrie-Flom Center for Health Law Policy Biotechnology and Bioethics Harvard University Cambridge MA USA. Department of Biomedical Informatics University at Buffalo Buffalo NY USA. Center for Clinical and Translational Science Mayo Clinic Rochester MN USA. Technology and Digital Solutions Stanford Medicine Stanford University Stanford CA USA. Center for Biomedical Informatics Rutgers Cancer Institute New Brunswick NJ USA. Department of Learning Health Sciences University of Michigan Medical School Ann Arbor MI USA. Altman Clinical and Translational Research Institute (ACTRI) University of California San Diego La Jolla CA USA. Department of Biostatistics and Health Data Science School of Medicine Indiana University Indianapolis IN USA. Department of Ophthalmology CCTSI University of Colorado Aurora CO USA. Center for Clinic
This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the CTSA Program led... 详细信息
来源: 评论
Deep learning for cardiac image segmentation: A review
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Chen Qin, Chen Qiu, Huaqi Tarroni, Giacomo Duan, Jinming Bai, Wenjia Rueckert, Daniel Biomedical Image Analysis Group Department of Computing Imperial College London London United Kingdom Department of Computer Science City University of London London United Kingdom School of Computer Science University of Birmingham Birmingham United Kingdom Data Science Institute Imperial College London London United Kingdom Division of Brain Sciences Department of Medicine Imperial College London London United Kingdom
Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers... 详细信息
来源: 评论