咨询与建议

限定检索结果

文献类型

  • 339 篇 期刊文献
  • 65 篇 会议
  • 1 册 图书

馆藏范围

  • 405 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 251 篇 工学
    • 136 篇 计算机科学与技术...
    • 114 篇 软件工程
    • 47 篇 生物医学工程(可授...
    • 46 篇 生物工程
    • 40 篇 信息与通信工程
    • 36 篇 光学工程
    • 31 篇 电气工程
    • 28 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 材料科学与工程(可...
    • 16 篇 安全科学与工程
    • 14 篇 控制科学与工程
    • 14 篇 核科学与技术
    • 12 篇 仪器科学与技术
  • 247 篇 理学
    • 124 篇 物理学
    • 81 篇 数学
    • 58 篇 生物学
    • 35 篇 化学
    • 31 篇 统计学(可授理学、...
    • 21 篇 地球物理学
    • 14 篇 天文学
    • 12 篇 系统科学
  • 48 篇 医学
    • 42 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 22 篇 公共卫生与预防医...
    • 15 篇 药学(可授医学、理...
  • 36 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 12 篇 法学
    • 12 篇 社会学
  • 11 篇 农学
  • 6 篇 经济学
  • 4 篇 教育学
  • 1 篇 军事学

主题

  • 18 篇 machine learning
  • 10 篇 gamma rays
  • 6 篇 federated learni...
  • 6 篇 artificial intel...
  • 5 篇 inverse problems
  • 5 篇 deep learning
  • 5 篇 quantum algorith...
  • 5 篇 image segmentati...
  • 5 篇 electronic struc...
  • 5 篇 photons
  • 5 篇 telescopes
  • 4 篇 reinforcement le...
  • 4 篇 gamma ray astron...
  • 4 篇 anomaly detectio...
  • 4 篇 calorimeters
  • 4 篇 dark matter (ast...
  • 4 篇 training
  • 3 篇 phase space meth...
  • 3 篇 magnetic resonan...
  • 3 篇 big data

机构

  • 30 篇 department of ph...
  • 28 篇 hiroshima astrop...
  • 24 篇 the oskar klein ...
  • 24 篇 dipartimento di ...
  • 23 篇 institut für ast...
  • 22 篇 department of ph...
  • 22 篇 dipartimento di ...
  • 22 篇 istituto naziona...
  • 21 篇 inaf-istituto di...
  • 21 篇 consorzio interu...
  • 20 篇 istituto naziona...
  • 19 篇 laboratoire lepr...
  • 19 篇 istituto naziona...
  • 18 篇 dipartimento di ...
  • 18 篇 berkeley institu...
  • 18 篇 istituto naziona...
  • 17 篇 nasa goddard spa...
  • 17 篇 institució catal...
  • 16 篇 physics division...
  • 15 篇 science institut...

作者

  • 24 篇 e. j. siskind
  • 24 篇 r. bellazzini
  • 23 篇 j. b. thayer
  • 23 篇 p. spinelli
  • 22 篇 p. a. caraveo
  • 22 篇 m. kuss
  • 22 篇 s. guiriec
  • 22 篇 s. rainò
  • 22 篇 p. fusco
  • 22 篇 m. e. monzani
  • 21 篇 i. a. grenier
  • 21 篇 p. f. michelson
  • 21 篇 h. takahashi
  • 21 篇 s. ciprini
  • 21 篇 r. rando
  • 21 篇 a. reimer
  • 21 篇 c. cecchi
  • 20 篇 m. razzano
  • 20 篇 l. latronico
  • 19 篇 r. buehler

语言

  • 372 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=Division of Computing and Data Science"
405 条 记 录,以下是41-50 订阅
排序:
Enhanced Penalty-based Bidirectional Reinforcement Learning Algorithms
arXiv
收藏 引用
arXiv 2025年
作者: Pula, Gana Sandeep Kumar, Sathish A.P. Jha, Sumit Ramanathan, Arvind Department of Computer Science Cleveland State University ClevelandOH United States School of Computing and Information Sciences Florida International University MiamiFL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States
This research focuses on enhancing reinforcement learning (RL) algorithms by integrating penalty functions to guide agents in avoiding unwanted actions while optimizing rewards. The goal is to improve the learning pro... 详细信息
来源: 评论
Classification of Real and Deepfakes Visual Samples with Pre-trained Deep Learning Models  7th
Classification of Real and Deepfakes Visual Samples with Pre...
收藏 引用
Proceedings of the 7th International Conference on Advances in computing and data sciences, ICACDS 2023
作者: Nawaz, Marriam Javed, Ali Nazir, Tahira Khan, Muhammad Attique Rajinikanth, Venkatesan Kadry, Seifedine Department of Software Engineering UET Taxila Taxila47050 Pakistan Department of Computing Riphah International University Islamabad Pakistan Department of Computer Science HITEC University Taxila Pakistan Department of Computer Science and Engineering Division of Research and Innovation Saveetha School of Engineering SIMATS Chennai602105 India Department of Applied Data Science Noroff University College Kristiansand4612 Norway Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon
Serious security and privacy problems have arisen as a result of significant advancements in the creation of deepfakes. Attackers can easily replace a person’s face with the target person’s face in an image using so... 详细信息
来源: 评论
Empirical Analysis of EIP-1559: Transaction Fees, Waiting Times, and Consensus Security  22
Empirical Analysis of EIP-1559: Transaction Fees, Waiting Ti...
收藏 引用
28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022
作者: Liu, Yulin Lu, Yuxuan Nayak, Kartik Zhang, Fan Zhang, Luyao Zhao, Yinhong SciEcon Cic London United Kingdom Center on Frontiers of Computing Studies Peking University Beijing China Department of Computer Science Duke University DurhamNC United States Department of Computer Science Yale University New HavenCT United States Data Science Research Center and Social Science Division Duke Kunshan University Suzhou China
A transaction fee mechanism (TFM) is an essential component of a blockchain protocol. However, a systematic evaluation of the real-world impact of TFMs is still absent. Using rich data from the Ethereum blockchain, th... 详细信息
来源: 评论
Advances in Privacy Preserving Federated Learning to Realize a Truly Learning Healthcare System
arXiv
收藏 引用
arXiv 2024年
作者: Madduri, Ravi Li, Zilinghan Nandi, Tarak Kim, Kibaek Ryu, Minseok Rodriguez, Alex Data Science and Learning Division Argonne National Laboratory LemontIL United States Mathematics and Computer Science Argonne National Laboratory LemontIL United States School of Computing and Augmented Intelligence Arizona State University TempeAZ United States
The concept of a learning healthcare system (LHS) envisions a self-improving network where multimodal data from patient care are continuously analyzed to enhance future healthcare outcomes. However, realizing this vis... 详细信息
来源: 评论
Fast point cloud generation with diffusion models in high energy physics
收藏 引用
Physical Review D 2023年 第3期108卷 036025-036025页
作者: Vinicius Mikuni Benjamin Nachman Mariel Pettee National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA
Many particle physics datasets like those generated at colliders are described by continuous coordinates (in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance), and... 详细信息
来源: 评论
FedMUA: Exploring the Vulnerabilities of Federated Learning to Malicious Unlearning Attacks
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Jian Lin, Zehui Lin, Wanyu Shi, Wenlong Yin, Xiaoyan Wang, Di Department of Data Science and Artificial Intelligence The Hong Kong Polytechnic University Hong Kong Department of Data Science and Artificial Intelligence The Department of Computing The Hong Kong Polytechnic University Hong Kong School of Electronic Information and Communications Huazhong University of Science and Technology Wuhan430074 China School of Information Science and Technology Northwest University Xi’an China Division of Computer Electrical and Mathematical Sciences and Engineering King Abdullah University of Science and Technology Saudi Arabia
Recently, the practical needs of "the right to be forgotten" in federated learning gave birth to a paradigm known as federated unlearning, which enables the server to forget personal data upon the client’s ... 详细信息
来源: 评论
SACB-Net: Spatial-awareness Convolutions for Medical Image Registration
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Xinxing Zhang, Tianyang Lu, Wenqi Meng, Qingjie Frangi, Alejandro F. Duan, Jinming School of Computer Science University of Birmingham United Kingdom Department of Computing and Mathematics Manchester Metropolitan University United Kingdom Division of Informatics Imaging and Data Sciences University of Manchester United Kingdom Centre for Computational Imaging and Modelling in Medicine University of Manchester United Kingdom Department of Computing Impeiral College London United Kingdom
Deep learning-based image registration methods have shown state-of-the-art performance and rapid inference speeds. Despite these advances, many existing approaches fall short in capturing spatially varying information... 详细信息
来源: 评论
Large Language Models, Computational Chemistry, and Digital Reticular Chemistry: A Perspective and Proposed Workflow
收藏 引用
Molecular Frontiers Journal 2024年 第01N02期08卷 3-6页
作者: Abdullah A. AlGhamdi Department of Chemistry and Kavli Energy Nanoscience Institute and Bakar Institute of Digital Materials for the Planet Division of Computing Data Science and Society University of California Berkeley CA USA UC Berkeley-KACST Joint Center of Excellence for Nanomaterials for Clean Energy Applications King Abdulaziz City for Science and Technology Riyadh 11442 Saudi Arabia
In this article, I explore the synergy between Large Language Models (LLMs) and computational chemistry in the context of digital reticular chemistry and propose a workflow leveraging these technologies to advance res... 详细信息
来源: 评论
Robustness of graph embedding methods for community detection
arXiv
收藏 引用
arXiv 2024年
作者: Wei, Zhi-Feng Moriano, Pablo Kannan, Ramakrishnan Advanced Computing Mathematics and Data Division Pacific Northwest National Laboratory RichlandWA99354 United States Department of Mathematics Indiana University BloomingtonIN47405 United States Computer Science and Mathematics Division Oak Ridge National Laboratory Oak RidgeTN37830 United States
This study investigates the robustness of graph embedding methods for community detection in the face of network perturbations, specifically edge deletions. Graph embedding techniques, which represent nodes as low-dim... 详细信息
来源: 评论
Explainable Enrichment-Driven GrAph Reasoner (EDGAR) for Large Knowledge Graphs with Applications in Drug Repurposing
arXiv
收藏 引用
arXiv 2024年
作者: Olasunkanmi, Olawumi Morris, Evan Kebede, Yaphet Lee, Harlin Ahalt, Stanley C. Tropsha, Alexander Bizon, Chris Department of Computer Science United States Renaissance Computing Institute United States School of Data Science and Society United States Division of Chemical Biology and Medicinal Chemistry UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel HillNC United States
Knowledge graphs (KGs) represent the connections and relationships between real-world entities. We propose a link prediction framework on KGs named Enrichment-Driven GrAph Reasoner (EDGAR) that infers new edges by min... 详细信息
来源: 评论