咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

主题

  • 1 篇 conferences
  • 1 篇 big data
  • 1 篇 clustering metho...
  • 1 篇 costs
  • 1 篇 minimization
  • 1 篇 shape
  • 1 篇 cost function

机构

  • 1 篇 bk21 four intell...
  • 1 篇 division of data...
  • 1 篇 interdisciplinar...
  • 1 篇 school of comput...
  • 1 篇 division of comp...
  • 1 篇 artificial intel...

作者

  • 1 篇 inyoung kim
  • 1 篇 inuk jung
  • 1 篇 minsik oh
  • 1 篇 heejoon chae
  • 1 篇 hongryul ahn
  • 1 篇 sun kim

语言

  • 1 篇 英文
检索条件"机构=Division of Data Science DS&ML Center"
1 条 记 录,以下是1-10 订阅
排序:
IDEA: Integrating Divisive and Ensemble-Agglomerate hierarchical clustering framework for arbitrary shape data
IDEA: Integrating Divisive and Ensemble-Agglomerate hierarch...
收藏 引用
IEEE International Conference on Big data
作者: Hongryul Ahn Inuk Jung Heejoon Chae Minsik Oh Inyoung Kim Sun Kim Division of Data Science DS&ML Center The University of Suwon Hwaseong Republic of Korea School of Computer Science and Engineering Kyungpook National University Daegu Republic of Korea Division of Computer Science Sookmyung Women's University Seoul Republic of Korea BK21 Four Intelligence Computing Seoul National University Seoul Republic of Korea Artificial Intelligence Institute Seoul National University Seoul Republic of Korea Interdisciplinary Program in Bioinformatics and Bioinformatics Institute Seoul National University Seoul Republic of Korea
Hierarchical clustering, a traditional clustering method, has been getting attention again. Among several reasons, a credit goes to a recent paper by Dasgupta in 2016 that proposed a cost function that quantitatively ... 详细信息
来源: 评论