咨询与建议

限定检索结果

文献类型

  • 218 篇 期刊文献
  • 81 篇 会议

馆藏范围

  • 299 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 205 篇 工学
    • 142 篇 计算机科学与技术...
    • 128 篇 软件工程
    • 42 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 27 篇 化学工程与技术
    • 18 篇 电子科学与技术(可...
    • 15 篇 电气工程
    • 14 篇 材料科学与工程(可...
    • 14 篇 控制科学与工程
    • 12 篇 仪器科学与技术
    • 10 篇 土木工程
    • 9 篇 机械工程
    • 9 篇 建筑学
    • 7 篇 动力工程及工程热...
  • 158 篇 理学
    • 82 篇 物理学
    • 48 篇 数学
    • 48 篇 生物学
    • 35 篇 化学
    • 20 篇 统计学(可授理学、...
    • 16 篇 地球物理学
    • 7 篇 系统科学
  • 37 篇 医学
    • 31 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 28 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 12 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 4 篇 农学
  • 3 篇 军事学
  • 2 篇 经济学
  • 2 篇 法学
  • 2 篇 教育学

主题

  • 18 篇 machine learning
  • 10 篇 computational mo...
  • 9 篇 training
  • 8 篇 molecular dynami...
  • 8 篇 data models
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 federated learni...
  • 6 篇 gravity waves
  • 6 篇 image reconstruc...
  • 5 篇 data mining
  • 5 篇 data transfer
  • 5 篇 forecasting
  • 4 篇 reliability
  • 4 篇 prediction model...
  • 4 篇 image segmentati...
  • 4 篇 supercomputers
  • 4 篇 information mana...
  • 4 篇 metadata
  • 4 篇 molecules

机构

  • 41 篇 data science and...
  • 34 篇 data science and...
  • 18 篇 department of co...
  • 17 篇 department of co...
  • 14 篇 department of ph...
  • 11 篇 data science and...
  • 10 篇 data science and...
  • 10 篇 department of co...
  • 9 篇 department of co...
  • 8 篇 national center ...
  • 8 篇 data science and...
  • 7 篇 faculty of mathe...
  • 7 篇 division of arti...
  • 7 篇 data science and...
  • 7 篇 division of data...
  • 6 篇 department of co...
  • 6 篇 x-ray science di...
  • 6 篇 department of co...
  • 6 篇 globus universit...
  • 5 篇 lab crestview ra...

作者

  • 55 篇 foster ian
  • 24 篇 kettimuthu rajku...
  • 24 篇 chard kyle
  • 21 篇 chard ryan
  • 20 篇 huerta e.a.
  • 19 篇 ian foster
  • 18 篇 blaiszik ben
  • 18 篇 ramanathan arvin...
  • 16 篇 kyle chard
  • 16 篇 liu zhengchun
  • 11 篇 ryan chard
  • 11 篇 ward logan
  • 10 篇 logan ward
  • 9 篇 clyde austin
  • 7 篇 li hongwei bran
  • 7 篇 stevens rick
  • 7 篇 babuji yadu
  • 7 篇 chung joaquin
  • 7 篇 brace alexander
  • 7 篇 bicer tekin

语言

  • 266 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=Division of Data Science and Learning"
299 条 记 录,以下是181-190 订阅
排序:
Enhanced Explicit Congestion Notification (EECN) in TCP with P4 Programming
Enhanced Explicit Congestion Notification (EECN) in TCP with...
收藏 引用
International Conference on Green and Human Information Technology (ICGHIT)
作者: Shahzad Shahzad Eun-Sung Jung Joaquin Chung Rajkumar Kettimuthu Hongik University Sejong South Korea Department of Electronics and Computer Engineering Hongik University Korea Data Science and Learning Division Argonne National Laboratory USA
In current TCP/IP networks, TCP mainly relies on packet drops as an indication of congestion. With the emergence of Explicit Congestion Notification (ECN), TCP can detect the congestion through packets with marked bit... 详细信息
来源: 评论
Nanoscale chemical imaging with structured X-ray illumination
收藏 引用
Proceedings of the National Academy of sciences of the United States of America 2023年 第49期120卷 e2314542120-e2314542120页
作者: Li, Jizhou Chen, Si Ratner, Daniel Blu, Thierry Pianetta, Piero Liu, Yijin Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park 94025 CA United States School of Data Science City University of HongKong Hong Kong X-ray Science Division Argonne National Laboratory Lemont 60439 IL United States Machine Learning Initiative SLAC National Accelerator Laboratory Menlo Park 94025 CA United States Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong Walker Department of Mechanical Engineering The University of Texas at Austin Austin 78705 TX United States
High-resolution imaging with compositional and chemical sensitivity is crucial for a wide range of scientific and engineering disciplines. Although synchrotron X-ray imaging through spectromicroscopy has been tremendo... 详细信息
来源: 评论
StormSeeker: A machine-learning-based mediterranean storm tracer  12th
StormSeeker: A machine-learning-based mediterranean storm tr...
收藏 引用
12th International Conference on Internet and Distributed Computing Systems, IDCS 2019
作者: Montella, Raffaele Di Luccio, Diana Ciaramella, Angelo Foster, Ian Science and Technologies Department University of Naples "Parthenope" Naples Italy Computer Science Department University of Chicago Chicago United States Data Science and Learning Division Argonne National Laboratory Argonne United States
The Mediterranean area is subject to a range of destructive weather events, including middle-latitudes storms, Mediterranean sub-tropical hurricane-like storms ("medicanes"), and small-scale but violent loca... 详细信息
来源: 评论
Prediction of Diblock Copolymer Morphology via Machine learning
arXiv
收藏 引用
arXiv 2023年
作者: Park, Hyun Yu, Boyuan Park, Juhae Sun, Ge Tajkhorshid, Emad de Pablo, Juan J. Schneider, Ludwig Theoretical and Computational Biophysics Group NIH Resource Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Center for Biophysics and Quantitative Biology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Pritzker School of Molecular Engineering University of Chicago 5640 Ellis Ave ChicagoIL60637 United States Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Biochemistry University of Illinois at Urbana-Champaign UrbanaIL61801 United States
A machine learning approach is presented to accelerate the computation of block polymer morphology evolution for large domains over long timescales. The strategy exploits the separation of characteristic times between... 详细信息
来源: 评论
Strain-induced superfluid transition for atoms on graphene
arXiv
收藏 引用
arXiv 2022年
作者: Kim, Sang Wook Elsayed, Mohamed Nichols, Nathan S. Lakoba, Taras Vanegas, Juan Wexler, Carlos Kotov, Valeri N. Maestro, Adrian Del Department of Physics University of Vermont BurlingtonVT05405 United States Data Science and Learning Division Argonne National Laboratory ArgonneIL60439 United States Department of Mathematics & Statistics University of Vermont BurlingtonVT05405 United States Department of Physics and Astronomy University of Missouri ColumbiaMO65211 United States Department of Physics and Astronomy University of Tennessee KnoxvilleTN37996 United States Min H. Kao Department of Electrical Engineering and Computer Science University of Tennessee KnoxvilleTN37996 United States
Bosonic atoms deposited on atomically thin substrates represent a playground for exotic quantum many-body physics due to the highly-tunable, atomic-scale nature of the interaction potentials. The ability to engineer s... 详细信息
来源: 评论
Molecular Dynamics and Machine learning Unlock Possibilities in Beauty Design—A Perspective
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Yuzhi Ni, Haowei Zhao, Fanyu Gao, Qinhui Zhao, Ziqing Chang, Chia-Hua Huo, Yanran Hu, Shiyu Zhang, Yike Grovu, Radu He, Min Zhang, John Z.H. Wang, Yuanqing Simons Center for Computational Physical Chemistry New YorkNY10003 United States Department of Chemistry New York University New YorkNY10003 United States Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning NYU-ECNU Center for Computational Chemistry NYU Shanghai Shanghai200062 China Department of Digital Humanities King’s College London Strand LondonWC2R 2LS United Kingdom Division of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing210029 China Internal Medicine Department Rhode Island Hospital Brown Univerisity Health ProvidenceRI02903 United States Xbiome Inc. CambridgeMA01451 United States Center for Data Science New York University New YorkNY10004 United States
Computational molecular design—the endeavor to design molecules, with various missions, aided by machine learning and molecular dynamics approaches, has been widely applied to create valuable new molecular entities, ... 详细信息
来源: 评论
GaNDLF-Synth: A Framework to Democratize Generative AI for (Bio)Medical Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Pati, Sarthak Mazurek, Szymon Bakas, Spyridon Division of Computational Pathology Department of Pathology and Laboratory Medicine Indiana University School of Medicine IndianapolisIN United States Center for Federated Learning Indiana University School of Medicine IndianapolisIN United States Medical Working Group MLCommons San FranciscoCA United States AGH University of Krakow Academic Computer Centre Cyfronet Krakow Poland Indiana University Melvin and Bren Simon Comprehensive Cancer Center IndianapolisIN United States Department of Radiology & Imaging Sciences Indiana University School of Medicine IndianapolisIN United States Department of Biostatistics & Health Data Science Indiana University School of Medicine IndianapolisIN United States Department of Neurological Surgery Indiana University School of Medicine IndianapolisIN United States Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IndianapolisIN United States
Generative Artificial Intelligence (GenAI) is a field of AI that creates new data samples from existing ones. It utilizing deep learning to overcome the scarcity and regulatory constraints of healthcare data by genera... 详细信息
来源: 评论
Community Action on FAIR data will Fuel a Revolution in Materials Research
arXiv
收藏 引用
arXiv 2022年
作者: Catherine Brinson, L. Bartolo, Laura M. Blaiszik, Ben Elbert, David Foster, Ian Strachan, Alejandro Voorhees, Peter W. Department of Mechanical Engineering and Materials Science Duke University DurhamNC27708 United States Data and Databases Center for Hierarchical Materials Design Northwestern University EvanstonIL60201 United States Globus University of Chicago ChicagoIL60637 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Materials Data Facility Hopkins Extreme Materials Institute Johns Hopkins University BaltimoreMD21218 United States Department of Computer Science University of Chicago United States Materials Engineering Purdue University West LafayetteIN47907 United States nanoHUB Purdue University West LafayetteIN47907 United States Materials Science and Engineering Northwestern University EvanstonIL60201 United States Center for Hierarchical Materials Design Northwestern University EvanstonIL60201 United States Northwestern Argonne Institute for Science and Engineering Northwestern University EvanstonIL60201 United States Department of Materials Science and Engineering Northwestern University EvanstonIL60201 United States
Widely shared and accessible materials data are the key to a world in which accelerated materials development addresses society's greatest challenges. We present a roadmap for connected materials data to enable re...
来源: 评论
iGEM: a model system for team science and innovation
arXiv
收藏 引用
arXiv 2023年
作者: Santolini, Marc Blondel, Leo Palmer, Megan J. Ward, Robert N. Jeyaram, Rathin Brink, Kathryn R. Krishna, Abhijeet Barabási, Albert-László Université Paris Cité Inserm System Engineering and Evolution Dynamics ParisF-75004 France Learning Planet Institute ParisF-75004 France Network Science Institute Department of Physics Northeastern University BostonMA02115 United States Department of Bioengineering Stanford University StanfordCA United States Center for International Security and Cooperation Stanford University StanfordCA United States School of Public Policy Georgia Institute of Technology AtlantaGA United States Channing Division of Network Medicine Department of Medicine Brigham and Women’s Hospital Harvard Medical School BostonMA United States Department of Network and Data Science Central European University Budapest Hungary
Teams are a primary source of innovation in science and technology. Rather than examining the lone genius, scholarly and policy attention has shifted to understanding how team interactions produce new and useful ideas...
来源: 评论
End-to-end AI Framework for Interpretable Prediction of Molecular and Crystal Properties
arXiv
收藏 引用
arXiv 2022年
作者: Park, Hyun Zhu, Ruijie Huerta, E.A. Chaudhuri, Santanu Tajkhorshid, Emad Cooper, Donny Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Materials Science and Engineering Northwestern University EvanstonIL60208 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Department of Computer Science The University of Chicago ChicagoIL60637 United States Department of Physics University of Illinois at Urbana-Champaign UrbanaIL61801 United States Multiscale Materials and Manufacturing Lab University of Illinois Chicago ChicagoIL60607 United States Department of Biochemistry University of Illinois at Urbana-Champaign UrbanaIL61801 United States Center for Biophysics and Quantitative Biology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Computational Science and Engineering Data Science and AI Department TotalEnergies EP Research & Technology USA LLC HoustonTX77002 United States
We introduce an end-to-end computational framework that allows for hyperparameter optimization using the DeepHyper library, accelerated model training, and interpretable AI inference. The framework is based on state-o... 详细信息
来源: 评论