咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 80 篇 会议

馆藏范围

  • 296 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 202 篇 工学
    • 142 篇 计算机科学与技术...
    • 128 篇 软件工程
    • 42 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 27 篇 化学工程与技术
    • 18 篇 电子科学与技术(可...
    • 15 篇 电气工程
    • 14 篇 控制科学与工程
    • 13 篇 材料科学与工程(可...
    • 12 篇 仪器科学与技术
    • 9 篇 机械工程
    • 9 篇 土木工程
    • 8 篇 建筑学
    • 7 篇 动力工程及工程热...
  • 154 篇 理学
    • 82 篇 物理学
    • 47 篇 数学
    • 46 篇 生物学
    • 34 篇 化学
    • 19 篇 统计学(可授理学、...
    • 16 篇 地球物理学
    • 7 篇 系统科学
  • 36 篇 医学
    • 31 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 28 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 12 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 3 篇 农学
  • 3 篇 军事学
  • 2 篇 经济学
  • 2 篇 法学
  • 2 篇 教育学

主题

  • 18 篇 machine learning
  • 10 篇 computational mo...
  • 9 篇 training
  • 8 篇 molecular dynami...
  • 8 篇 data models
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 federated learni...
  • 6 篇 gravity waves
  • 6 篇 image reconstruc...
  • 5 篇 data mining
  • 5 篇 data transfer
  • 5 篇 forecasting
  • 4 篇 reliability
  • 4 篇 prediction model...
  • 4 篇 image segmentati...
  • 4 篇 supercomputers
  • 4 篇 information mana...
  • 4 篇 metadata
  • 4 篇 molecules

机构

  • 41 篇 data science and...
  • 34 篇 data science and...
  • 18 篇 department of co...
  • 17 篇 department of co...
  • 14 篇 department of ph...
  • 12 篇 data science and...
  • 10 篇 data science and...
  • 10 篇 department of co...
  • 9 篇 department of co...
  • 8 篇 national center ...
  • 8 篇 data science and...
  • 7 篇 faculty of mathe...
  • 7 篇 division of arti...
  • 7 篇 data science and...
  • 7 篇 division of data...
  • 6 篇 department of co...
  • 6 篇 x-ray science di...
  • 6 篇 department of co...
  • 6 篇 globus universit...
  • 5 篇 lab crestview ra...

作者

  • 55 篇 foster ian
  • 24 篇 kettimuthu rajku...
  • 24 篇 chard kyle
  • 21 篇 chard ryan
  • 20 篇 huerta e.a.
  • 19 篇 ian foster
  • 18 篇 blaiszik ben
  • 18 篇 ramanathan arvin...
  • 16 篇 kyle chard
  • 16 篇 liu zhengchun
  • 11 篇 ryan chard
  • 11 篇 ward logan
  • 10 篇 logan ward
  • 9 篇 clyde austin
  • 8 篇 rajkumar kettimu...
  • 7 篇 li hongwei bran
  • 7 篇 stevens rick
  • 7 篇 babuji yadu
  • 7 篇 chung joaquin
  • 7 篇 brace alexander

语言

  • 274 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"机构=Division of Data Science and Learning"
296 条 记 录,以下是41-50 订阅
排序:
Predicting Drug Effects from High-Dimensional, Asymmetric Drug datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction
Predicting Drug Effects from High-Dimensional, Asymmetric Dr...
收藏 引用
International Conference on Machine learning and Applications (ICMLA)
作者: Avishek Bose Guojing Cong Learning Systems Group Data and AI Systems Section Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge TN USA
Graph neural networks (GNNs) have emerged as one of the most effective ML techniques for drug effect prediction from drug molecular graphs. Despite having immense potential, GNN models lack performance when using data... 详细信息
来源: 评论
Transferable Graph Neural Fingerprint Models for Quick Response to Future Bio-Threats  22
Transferable Graph Neural Fingerprint Models for Quick Respo...
收藏 引用
22nd IEEE International Conference on Machine learning and Applications, ICMLA 2023
作者: Chen, Wei Ren, Yihui Kagawa, Ai Carbone, Matthew R. Chen, Samuel Yen-Chi Qu, Xiaohui Yoo, Shinjae Clyde, Austin Ramanathan, Arvind Stevens, Rick L. Van Dam, Hubertus J. J. Lu, Deyu Center for Functional Nanomaterials Brookhaven National Laboratory UptonNY United States Computational Science Initiative Brookhaven National Laboratory UptonNY United States Argonne National Laboratory Data Science and Learning Division LemontIL United States Condensed Matter Physics & Materials Science Brookhaven National Laboratory UptonNY United States
Fast screening of drug molecules based on the ligand binding affinity is an important step in the drug discovery pipeline. Graph neural fingerprint is a promising method for developing molecular docking surrogates wit... 详细信息
来源: 评论
WRATH: Workload Resilience Across Task Hierarchies in Task-based Parallel Programming Frameworks
arXiv
收藏 引用
arXiv 2025年
作者: Zhou, Sicheng Li, Zhuozhao Hayot-Sasson, Valérie Pan, Haochen Gonthier, Maxime Pauloski, J. Gregory Chard, Ryan Chard, Kyle Foster, Ian Department of Computer Science Southern University of Science and Technology Guangdong China Department of Computer Science University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States
Failures in Task-based Parallel Programming (TBPP) can severely degrade performance and result in incomplete or incorrect outcomes. Existing failure-handling approaches, including reactive, proactive, and resilient me... 详细信息
来源: 评论
Experiences on Developing an on-Demand Entanglement Service Coexisting with Classical Traffic over a Q-LAN Testbed
Experiences on Developing an on-Demand Entanglement Service ...
收藏 引用
Quantum Computing and Engineering (QCE), IEEE International Conference on
作者: Md Shariful Islam Joaquin Chung Raj Kettimuthu Anirudh Ramesh Prem Kumar Data Science and Learning Division Argonne National Laboratory Lemont IL Dept. of Electrical and Computer Eng. Northwestern University Evanston IL USA
Near-term quantum networks will require a framework for requesting the distribution of entanglement between remote parties. Centralized controllers that provide an interface to users, while orchestrating the functiona... 详细信息
来源: 评论
Predicting Drug Effects from High-Dimensional, Asymmetric Drug datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction
arXiv
收藏 引用
arXiv 2024年
作者: Bose, Avishek Cong, Guojing Learning Systems Group Data and AI Systems Section Computer Science and Mathematics Division Oak Ridge National Laboratory Oak RidgeTN United States
Graph neural networks (GNNs) have emerged as one of the most effective ML techniques for drug effect prediction from drug molecular graphs. Despite having immense potential, GNN models lack performance when using data... 详细信息
来源: 评论
Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A Survey and Vision  23
Trillion Parameter AI Serving Infrastructure for Scientific ...
收藏 引用
Proceedings of the IEEE/ACM 10th International Conference on Big data Computing, Applications and Technologies
作者: Nathaniel C Hudson J. Gregory Pauloski Matt Baughman Alok Kamatar Mansi Sakarvadia Logan Ward Ryan Chard André Bauer Maksim Levental Wenyi Wang Will Engler Owen Price Skelly Ben Blaiszik Rick Stevens Kyle Chard Ian Foster Department of Computer Science University of Chicago Chicago Illinois United States Data Science and Learning Division Argonne National Laboratory Lemont Illinois US Data Science and Learning Division Argonne National Laboratory Lemont Illinois United States Globus University of Chicago Chicago Illinois United States Globus The University of Chicago Chicago Illinois United States Department of Computer Science University of Chicago Chicago Illinois USA
Deep learning methods are transforming research, enabling new techniques, and ultimately leading to new discoveries. As the demand for more capable AI models continues to grow, we are now entering an era of Trillion P... 详细信息
来源: 评论
Investigation of Red Fox Algorithm for Solving Task Assignment Problem in Heterogeneous Unmanned Aerial Vehicle Swarm
Investigation of Red Fox Algorithm for Solving Task Assignme...
收藏 引用
Artificial Intelligence For Internet of Things (AIIoT), International Conference on
作者: K. Manaswitha Titus Issac Salaja Silas J Sebastian Terance Division of Data Science and Cyber Security Karunya Institute of Technology and Sciences Coimbatore India Division of Computer Science and Engineering Karunya Institute of Technology and Sciences Coimbatore India Division of Artificial Intelligence and Machine Learning Karunya Institute of Technology and Sciences Coimbatore India
In recent years, there have been significant advancements in Unmanned Aerial Vehicles (UAVs), leading to their integration into everyday life. UAVs are constrained by limited energy, communication, and localization. T... 详细信息
来源: 评论
Distributed Model Exploration with EMEWS
Distributed Model Exploration with EMEWS
收藏 引用
Simulation Winter Conference
作者: Nicholson Collier Justin M. Wozniak Arindam Fadikar Abby Stevens Jonathan Ozik Decision and Infrastructure Sciences Division Argonne National Laboratory Lemont IL USA Consortium for Advanced Science and Engineering University of Chicago Chicago IL USA Data Science and Learning Division Argonne National Laboratory Lemont IL USA
As high-performance computing resources have become increasingly available, new modes of applying and experimenting with simulation and other computational tools have become possible. This tutorial presents recent adv... 详细信息
来源: 评论
Balancing Federated learning Trade-Offs for Heterogeneous Environments
Balancing Federated Learning Trade-Offs for Heterogeneous En...
收藏 引用
IEEE Annual Conference on Pervasive Computing and Communications Workshops (PerCom)
作者: Matt Baughman Nathaniel Hudson Ian Foster Kyle Chard Department of Computer Science University of Chicago Chicago IL United States Data Science & Learning Division Argonne National Laboratory Lemont IL United States
Federated learning (FL) is an enabling technology for supporting distributed machine learning across several de-vices on decentralized data. A critical challenge when FL in practice is the system resource heterogeneit...
来源: 评论
Advancing AI/ML at the Advanced Photon Source
收藏 引用
Synchrotron Radiation News 2022年 第4期35卷 28-35页
作者: Benmore, Chris Bicer, Tekin Chan, Maria K. Y. Di, Zichao Gürsoy, Dog˘a Hwang, Inhui Kuklev, Nikita Lin, Dergan Liu, Zhengchun Lobach, Ihar Qiao, Zhi Rebuffi, Luca Sharma, Hemant Shi, Xianbo Sun, Chengjun Yao, Yudong Zhou, Tao Sandy, Alec Miceli, Antonino Sun, Yine Schwarz, Nicholas Cherukara, Mathew J. X-ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL United States Data Science and Learning Division Argonne National Laboratory Lemont IL United States Center for Nanoscale Materials Argonne National Laboratory Lemont IL United States Mathematics and Computer Science Argonne National Laboratory Lemont IL United States Accelerator Science Division Advanced Photon Source Argonne National Laboratory Lemont IL United States
Click to increase image sizeClick to decrease image size
来源: 评论