咨询与建议

限定检索结果

文献类型

  • 217 篇 期刊文献
  • 81 篇 会议

馆藏范围

  • 298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 202 篇 工学
    • 142 篇 计算机科学与技术...
    • 128 篇 软件工程
    • 42 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 27 篇 化学工程与技术
    • 18 篇 电子科学与技术(可...
    • 15 篇 电气工程
    • 14 篇 控制科学与工程
    • 13 篇 材料科学与工程(可...
    • 12 篇 仪器科学与技术
    • 9 篇 机械工程
    • 9 篇 土木工程
    • 8 篇 建筑学
    • 7 篇 动力工程及工程热...
  • 154 篇 理学
    • 82 篇 物理学
    • 47 篇 数学
    • 46 篇 生物学
    • 34 篇 化学
    • 19 篇 统计学(可授理学、...
    • 16 篇 地球物理学
    • 7 篇 系统科学
  • 36 篇 医学
    • 31 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 28 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 12 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 3 篇 农学
  • 3 篇 军事学
  • 2 篇 经济学
  • 2 篇 法学
  • 2 篇 教育学

主题

  • 18 篇 machine learning
  • 10 篇 computational mo...
  • 9 篇 training
  • 8 篇 molecular dynami...
  • 8 篇 data models
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 federated learni...
  • 6 篇 gravity waves
  • 6 篇 image reconstruc...
  • 5 篇 data mining
  • 5 篇 data transfer
  • 5 篇 forecasting
  • 4 篇 reliability
  • 4 篇 prediction model...
  • 4 篇 image segmentati...
  • 4 篇 supercomputers
  • 4 篇 information mana...
  • 4 篇 metadata
  • 4 篇 molecules

机构

  • 41 篇 data science and...
  • 34 篇 data science and...
  • 18 篇 department of co...
  • 17 篇 department of co...
  • 14 篇 department of ph...
  • 11 篇 data science and...
  • 10 篇 data science and...
  • 10 篇 department of co...
  • 9 篇 department of co...
  • 8 篇 national center ...
  • 8 篇 data science and...
  • 7 篇 faculty of mathe...
  • 7 篇 division of arti...
  • 7 篇 data science and...
  • 7 篇 division of data...
  • 6 篇 department of co...
  • 6 篇 x-ray science di...
  • 6 篇 department of co...
  • 6 篇 globus universit...
  • 5 篇 lab crestview ra...

作者

  • 55 篇 foster ian
  • 24 篇 kettimuthu rajku...
  • 24 篇 chard kyle
  • 21 篇 chard ryan
  • 20 篇 huerta e.a.
  • 19 篇 ian foster
  • 18 篇 blaiszik ben
  • 18 篇 ramanathan arvin...
  • 16 篇 kyle chard
  • 16 篇 liu zhengchun
  • 11 篇 ryan chard
  • 11 篇 ward logan
  • 10 篇 logan ward
  • 9 篇 clyde austin
  • 7 篇 li hongwei bran
  • 7 篇 stevens rick
  • 7 篇 babuji yadu
  • 7 篇 chung joaquin
  • 7 篇 brace alexander
  • 7 篇 bicer tekin

语言

  • 276 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"机构=Division of Data Science and Learning"
298 条 记 录,以下是71-80 订阅
排序:
APPFL: Open-Source Software Framework for Privacy-Preserving Federated learning
arXiv
收藏 引用
arXiv 2022年
作者: Ryu, Minseok Kim, Youngdae Kim, Kibaek Madduri, Ravi K. Mathematics and Computer Science Division Argonne National Laboratory LemontIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States
Federated learning (FL) enables training models at different sites and updating the weights from the training instead of transferring data to a central location and training as in classical machine learning. The FL ca... 详细信息
来源: 评论
S$^\text{3}$Attention: Improving Long Sequence Attention With Smoothed Skeleton Sketching
收藏 引用
IEEE Journal of Selected Topics in Signal Processing 2024年 第6期18卷 985-996页
作者: Xue Wang Tian Zhou Jianqing Zhu Jialin Liu Kun Yuan Tao Yao Wotao Yin Rong Jin HanQin Cai Alibaba Group Bellevue WA USA Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology Thuwal Saudi Arabia Department of Statistics and Data Science University of Central Florida Orlando FL USA Center for Machine Learning Research Peking University Beijing China Antai College of Economics and Management Shanghai Jiao Tong University Shanghai China Meta Menlo Park CA USA Department of Statistics and Data Science and the Department of Computer Science University of Central Florida Orlando FL USA
Attention based models have achieved many remarkable breakthroughs in numerous applications. However, the quadratic complexity of Attention makes the vanilla Attention based models hard to apply to long sequence tasks... 详细信息
来源: 评论
Can Automated Metadata Extraction Make Scientific data More Navigable?
Can Automated Metadata Extraction Make Scientific Data More ...
收藏 引用
IEEE International Conference on e-science and Grid Computing
作者: Tyler J. Skluzacek Kyle Chard Ian Foster Oak Ridge National Lab National Center for Computational Sciences Oak Ridge TN Department of Computer Science University of Chicago Chicago IL Data Science and Learning Division Argonne National Lab Lemont IL
FAIR principles require that scientific data be findable, discoverable, and reusable by users. To enable FAIRness, practioners of a science repository will often construct a rich, searchable index of metadata derived ...
来源: 评论
DEEP learning METHODS FOR DRUG RESPONSE PREDICTION IN CANCER: PREDOMINANT AND EMERGING TRENDS
arXiv
收藏 引用
arXiv 2022年
作者: Partin, Alexander Brettin, Thomas S. Zhu, Yitan Narykov, Oleksandr Clyde, Austin Overbeek, Jamie Stevens, Rick L. Division of Data Science and Learning Argonne National Laboratory LemontIL United States Department of Computer Science The University of Chicago ChicagoIL United States
Cancer claims millions of lives yearly worldwide. While many therapies have been made available in recent years, by in large cancer remains unsolved. Exploiting computational predictive models to study and treat cance... 详细信息
来源: 评论
Machine learning Materials Properties with Accurate Predictions, Uncertainty Estimates, Domain Guidance, and Persistent Online Accessibility
arXiv
收藏 引用
arXiv 2024年
作者: Jacobs, Ryan Schultz, Lane E. Scourtas, Aristana Schmidt, K.J. Price-Skelly, Owen Engler, Will Foster, Ian Blaiszik, Ben Voyles, Paul M. Morgan, Dane Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI United States Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Computer Science University of Chicago ChicagoIL United States
One compelling vision of the future of materials discovery and design involves the use of machine learning (ML) models to predict materials properties and then rapidly find materials tailored for specific applications... 详细信息
来源: 评论
Linking the Dynamic PicoProbe Analytical Electron-Optical Beam Line / Microscope to Supercomputers
arXiv
收藏 引用
arXiv 2023年
作者: Brace, Alexander Vescovi, Rafael Chard, Ryan Saint, Nickolaus D. Ramanathan, Arvind Zaluzec, Nestor J. Foster, Ian Data Science and Learning Division Argonne National Laboratory LemontIL United States Computer Science Department University of Chicago ChicagoIL United States Photon Sciences Division Argonne National Laboratory LemontIL United States Physical Sciences Division University of Chicago ChicagoIL United States
The Dynamic PicoProbe at Argonne National Laboratory is undergoing upgrades that will enable it to produce up to 100s of GB of data per day. While this data is highly important for both fundamental science and industr... 详细信息
来源: 评论
EAIRA: Establishing a Methodology for Evaluating AI Models as Scientific Research Assistants
arXiv
收藏 引用
arXiv 2025年
作者: Cappello, Franck Madireddy, Sandeep Underwood, Robert Getty, Neil Chia, Nicholas Lee-Ping Ramachandra, Nesar Nguyen, Josh Keçeli, Murat Mallick, Tanwi Li, Zilinghan Ngom, Marieme Zhang, Chenhui Yanguas-Gil, Angel Antoniuk, Evan Kailkhura, Bhavya Tian, Minyang Du, Yufeng Ting, Yuan-Sen Wells, Azton Nicolae, Bogdan Maurya, Avinash Mustafa Rafique, M. Huerta, Eliu Li, Bo Foster, Ian Stevens, Rick Mathematics and Computer Science Division Argonne National Laboratory United States Data Science and Learning Division Argonne National Laboratory United States Computational Science Division Argonne National Laboratory United States Applied Materials Division Argonne National Laboratory United States Department of Computer Science The University of Chicago United States University of Pennsylvania United States Lawrence Livermore National Laboratory United States The Ohio State University United States Rochester Institute of Technology United States Massachusetts Institute of Technology United States
Recent advancements have positioned AI, and particularly Large Language Models (LLMs) as transformative tools for scientific research, capable of addressing complex tasks that require reasoning, problem-solving, and d... 详细信息
来源: 评论
Quantum Advantage in Distributed Sensing with Noisy Quantum Networks
arXiv
收藏 引用
arXiv 2024年
作者: Zang, Allen Kolar, Alexander Gonzales, Alvin Chung, Joaquin Gray, Stephen K. Kettimuthu, Rajkumar Zhong, Tian Saleem, Zain H. Pritzker School of Molecular Engineering University of Chicago ChicagoIL United States Mathematics and Computer Science Division Argonne National Laboratory LemontIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Center for Nanoscale Materials Argonne National Laboratory LemontIL United States
It is critically important to analyze the achievability of quantum advantage under realistic imperfections. In this work, we show that quantum advantage in distributed sensing can be achieved with noisy quantum networ... 详细信息
来源: 评论
Recurrent and Spiking Modeling of Sparse Surgical Kinematics  2020
Recurrent and Spiking Modeling of Sparse Surgical Kinematics
收藏 引用
2020 International Conference on Neuromorphic Systems, ICONS 2020
作者: Getty, Neil Zhao, Zixuan Gruessner, Stephan Chen, Liaohai Xia, Fangfang Argonne National Laboratory Data Science and Learning Division Department of Surgery University of Illinois at Chicago
Robot-assisted minimally invasive surgery is improving surgeon performance and patient outcomes. This innovation is also turning what has been a subjective practice into motion sequences that can be precisely measured... 详细信息
来源: 评论
Adversarial Predictions of data Distributions Across Federated Internet-of-Things Devices
arXiv
收藏 引用
arXiv 2023年
作者: Rajani, Samir Dematties, Dario Hudson, Nathaniel Chard, Kyle Ferrier, Nicola Sankaran, Rajesh Beckman, Peter Northwestern Argonne Institute of Science and Engineering Northwestern University EvanstonIL United States Mathematics and Computer Science Division Argonne National Laboratory LemontIL United States Department of Computer Science University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States
Federated learning (FL) is increasingly becoming the default approach for training machine learning models across decentralized Internet-of-Things (IoT) devices. A key advantage of FL is that no raw data are communica... 详细信息
来源: 评论