咨询与建议

限定检索结果

文献类型

  • 26 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 50 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 33 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 21 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 生物工程
    • 2 篇 信息与通信工程
    • 2 篇 农业工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 10 篇 理学
    • 4 篇 数学
    • 4 篇 物理学
    • 3 篇 生物学
    • 2 篇 大气科学
    • 1 篇 统计学(可授理学、...
  • 5 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 3 篇 教育学
    • 3 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学

主题

  • 7 篇 reinforcement le...
  • 4 篇 visual languages
  • 2 篇 physical propert...
  • 2 篇 learning systems
  • 2 篇 high level langu...
  • 2 篇 robotic manipula...
  • 2 篇 clone cells
  • 2 篇 kinematics
  • 1 篇 modeling
  • 1 篇 robot experiment...
  • 1 篇 diffusion policy
  • 1 篇 task analysis
  • 1 篇 motion planning
  • 1 篇 three-dimensiona...
  • 1 篇 deep learning in...
  • 1 篇 big data
  • 1 篇 soft tissue palp...
  • 1 篇 path planning
  • 1 篇 redundancy
  • 1 篇 imitation learni...

机构

  • 15 篇 dyson robot lear...
  • 9 篇 dyson robot lear...
  • 7 篇 dyson robot lear...
  • 6 篇 uc berkeley unit...
  • 4 篇 flair university...
  • 4 篇 the chinese univ...
  • 3 篇 uc berkeley
  • 3 篇 kaist
  • 3 篇 kaist korea repu...
  • 3 篇 korea adv inst s...
  • 3 篇 univ calif berke...
  • 2 篇 technical univer...
  • 2 篇 mila université ...
  • 2 篇 university of ca...
  • 2 篇 the robot learni...
  • 2 篇 alfred weber ins...
  • 2 篇 the dyson roboti...
  • 2 篇 futurelab on gam...
  • 2 篇 university of ox...
  • 2 篇 university of ox...

作者

  • 22 篇 james stephen
  • 11 篇 seo younggyo
  • 10 篇 abbeel pieter
  • 9 篇 johns edward
  • 9 篇 ma xiao
  • 7 篇 lo yat long
  • 5 篇 lee kimin
  • 5 篇 shin jinwoo
  • 5 篇 kapelyukh ivan
  • 4 篇 backshall nichol...
  • 4 篇 davison andrew j...
  • 4 篇 foerster jakob
  • 4 篇 haughton iain
  • 4 篇 liu yun-hui
  • 3 篇 jinwoo shin
  • 3 篇 liu hao
  • 3 篇 chen kai
  • 3 篇 pieter abbeel
  • 3 篇 dou qi
  • 3 篇 younggyo seo

语言

  • 48 篇 英文
  • 2 篇 其他
检索条件"机构=Dyson Robot Learning Lab"
50 条 记 录,以下是41-50 订阅
排序:
Guide Your Agent with Adaptive Multimodal Rewards  37
Guide Your Agent with Adaptive Multimodal Rewards
收藏 引用
37th Conference on Neural Information Processing Systems (NeurIPS)
作者: Kim, Changyeon Seo, Younggyo Liu, Hao Lee, Lisa Shin, Jinwoo Lee, Honglak Lee, Kimin Korea Adv Inst Sci & Technol Daejeon South Korea Dyson Robot Learning Lab London England Univ Calif Berkeley Berkeley CA USA Google DeepMind Mountain View CA USA Univ Michigan Ann Arbor MI 48109 USA LG AI Res Seoul South Korea
Developing an agent capable of adapting to unseen environments remains a difficult challenge in imitation learning. This work presents Adaptive Return-conditioned Policy (ARP), an efficient framework designed to enhan... 详细信息
来源: 评论
StereoPose: Category-Level 6D Transparent Object Pose Estimation from Stereo Images via Back-View NOCS
StereoPose: Category-Level 6D Transparent Object Pose Estima...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Kai Chen Stephen James Congying Sui Yun-Hui Liu Pieter Abbeel Qi Dou The Chinese University of Hong Kong University of California Berkeley Dyson Robot Learning Lab. Hong Kong Centre for Logistics Robotics
Most existing methods for category-level pose estimation rely on object point clouds. However, when considering transparent objects, depth cameras are usually not able to capture high-quality data, resulting in point ...
来源: 评论
Auto-λ: Disentangling Dynamic Task Relationships
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Shikun James, Stephen Davison, Andrew J. Johns, Edward Dyson Robotics Lab Imperial College London United Kingdom Robot Learning Lab Imperial College London United Kingdom UC Berkeley United States
Understanding the structure of multiple related tasks allows for multi-task learning to improve the generalisation ability of one or all of them. However, it usually requires training each pairwise combination of task... 详细信息
来源: 评论
learning MULTI-AGENT COMMUNICATION WITH CONTRASTIVE learning
arXiv
收藏 引用
arXiv 2023年
作者: Lo, Yat Long Sengupta, Biswa Foerster, Jakob Noukhovitch, Michael Dyson Robot Learning Lab. United Kingdom JPMorgan Chase FLAIR University of Oxford United Kingdom Mila Université de Montréal Canada
Communication is a powerful tool for coordination in multi-agent RL. But inducing an effective, common language is a difficult challenge, particularly in the decentralized setting. In this work, we introduce an altern... 详细信息
来源: 评论
CHEAP TALK DISCOVERY AND UTILIZATION IN MULTI-AGENT REINFORCEMENT learning
arXiv
收藏 引用
arXiv 2023年
作者: Lo, Yat Long de Witt, Christian Schroeder Sokota, Samuel Foerster, Jakob Whiteson, Shimon University of Oxford Dyson Robot Learning Lab United Kingdom FLAIR University of Oxford United Kingdom Carnegie Mellon University United States University of Oxford United Kingdom
By enabling agents to communicate, recent cooperative multi-agent reinforcement learning (MARL) methods have demonstrated better task performance and more coordinated behavior. Most existing approaches facilitate inte... 详细信息
来源: 评论
StereoPose: Category-Level 6D Transparent Object Pose Estimation from Stereo Images via Back-View NOCS
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Kai James, Stephen Sui, Congying Liu, Yun-Hui Abbeel, Pieter Dou, Qi The Chinese University of Hong Kong Hong Kong University of California Berkeley United States Dyson Robot Learning Lab Hong Kong Centre for Logistics Robotics Hong Kong
Most existing methods for category-level pose estimation rely on object point clouds. However, when considering transparent objects, depth cameras are usually not able to capture meaningful data, resulting in point cl... 详细信息
来源: 评论
Guide Your Agent with Adaptive Multimodal Rewards
arXiv
收藏 引用
arXiv 2023年
作者: Kim, Changyeon Seo, Younggyo Liu, Hao Lee, Lisa Shin, Jinwoo Lee, Honglak Lee, Kimin KAIST Korea Republic of Dyson Robot Learning Lab United Kingdom UC Berkeley United States Google DeepMind United Kingdom University of Michigan United States LG AI Research
Developing an agent capable of adapting to unseen environments remains a difficult challenge in imitation learning. This work presents Adaptive Return-conditioned Policy (ARP), an efficient framework designed to enhan... 详细信息
来源: 评论
Speed Co-Augmentation for Unsupervised Audio-Visual Pre-training
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Jiangliu Jiao, Jianbo Song, Yibing James, Stephen Tong, Zhan Ge, Chongjian Abbeel, Pieter Liu, Yun-Hui The Chinese University of Hong Kong Hong Kong University of Birmingham United Kingdom Fudan University China Dyson Robot Learning Lab United Kingdom Tencent AI Lab China The University of Hong Kong Hong Kong UC Berkeley United States
This work aims to improve unsupervised audio-visual pre-training. Inspired by the efficacy of data augmentation in visual contrastive learning, we propose a novel speed co-augmentation method that randomly changes the...
来源: 评论
Improving International Climate Policy via Mutually Conditional Binding Commitments (Track 3)
arXiv
收藏 引用
arXiv 2023年
作者: Heitzig, Jobst Oechssler, Jörg Pröschel, Christoph Ragavan, Niranjana Long Lo, Richie Yat FutureLab on Game Theory and Networks of Interacting Agents Complexity Science Department Potsdam Institute for Climate Impact Research Germany Alfred Weber Institute for Economics University of Heidelberg Germany Technical University of Berlin Germany Dyson Robot Learning Lab United Kingdom
This paper proposes enhancements to the RICE-N simulation and multi-agent reinforcement learning framework to improve the realism of international climate policy negotiations. Acknowledging the framework’s value, we ... 详细信息
来源: 评论
Improving International Climate Policy via Mutually Conditional Binding Commitments
arXiv
收藏 引用
arXiv 2023年
作者: Heitzig, Jobst Oechssler, Jörg Pröschel, Christoph Ragavan, Niranjana Lo, Yat Long FutureLab on Game Theory and Networks of Interacting Agents Complexity Science Department Potsdam Institute for Climate Impact Research Germany Alfred Weber Institute for Economics University of Heidelberg Germany Technical University of Berlin Germany Dyson Robot Learning Lab United Kingdom
The Paris Agreement, considered a significant milestone in climate negotiations, has faced challenges in effectively addressing climate change due to the unconditional nature of most Nationally Determined Contribution... 详细信息
来源: 评论