The issue of signal outages in sub-THz frequency communication for future 6G networks is addressed by this research. A machine learning method is proposed, employing Random Forest and K-Means algorithms to predict the...
详细信息
This research endeavors to advance energy efficiency (EE) within heterogeneous networks (HetNets) through a comprehensive approach. Initially, we establish a foundational framework by implementing a two-tier network a...
详细信息
This research endeavors to advance energy efficiency (EE) within heterogeneous networks (HetNets) through a comprehensive approach. Initially, we establish a foundational framework by implementing a two-tier network architecture based on Poisson process distribution from stochastic geometry. Through this deployment, we develop a tailored EE model, meticulously analyzing the implications of random base station and user distributions on energy efficiency. We formulate joint base station and user densities that are optimized for EE while adhering to stringent quality-of-service (QoS) requirements. Subsequently, we introduce a novel dynamically distributed opportunistic sleep strategy (D-DOSS) to optimize EE. This strategy strategically clusters base stations throughout the network and dynamically adjusts their sleep patterns based on real-time traffic load thresholds. Employing Monte Carlo simulations with MATlab, we rigorously evaluate the efficacy of the D-DOSS approach, quantifying improvements in critical QoS parameters, such as coverage probability, energy utilization efficiency (EUE), success probability, and data throughput. In conclusion, our research represents a significant step toward optimizing EE in HetNets, simultaneously addressing network architecture optimization and proposing an innovative sleep management strategy, offering practical solutions to maximize energy efficiency in future wireless networks.
This paper presents a UAV-swarm-communication model using a machine-learning approach for search-and-rescue applications. Firstly, regarding the communication of UAVs, the receive signal strength (RSS) and power loss ...
详细信息
This paper presents a UAV-swarm-communication model using a machine-learning approach for search-and-rescue applications. Firstly, regarding the communication of UAVs, the receive signal strength (RSS) and power loss have been modeled using random forest regression, and the mathematical representation of the channel matrix has also been discussed. The second part consisted of swarm control modeling of UAVs;however, a dataset for five types of triangular swarm formations was generated, and K-means clustering was applied to predict the cluster. In order to obtain the correct swarm formation, the dendrogram of all types was investigated. Finally, the heat map and contour were plotted for all kinds of swarm clusters. Furthermore, it was observed that the RSS of proposed swarms had good agreement with swarm distances.
暂无评论