Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. To address this challenge posed by complex backgrounds in s...
详细信息
Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. To address this challenge posed by complex backgrounds in salient object detection is crucial for advancing the field. This article proposes a novel deep learning-based architecture called SODU2-NET (Salient object detection U2-Net) for salient object detection that utilizes the U-NET base structure. This model addresses a gap in previous work that focused primarily on complex backgrounds by employing a densely supervised encoder-decoder network. The proposed SODU2-NET employs sophisticated background subtraction techniques and utilizes advanced deep learning architectures that can discern relevant foreground information when dealing with complex backgrounds. Firstly, an enriched encoder block with full feature fusion (FFF) with atrous spatial pyramid pooling (ASPP) varying dilation rates to efficiently capture multi-scale contextual information, improving salient object detection in complex backgrounds and reducing the loss of information during down-sampling. Secondly the block includes an attention module that refines the decoder, is constructed to enhances the detection of salient objects in complex backgrounds by selectively focusing attention on relevant features. This allows the model to reconstruct detailed and contextually relevant information, which is essential to determining salient objects accurately. Finally, the architecture has been improved by adding a residual block at the encoder end, which is responsible for both saliency prediction and map refinement. The proposed network is designed to learn the transformation between input images and ground truth, enabling accurate segmentation of salient object regions with clear borders and accurate prediction of fine structures. SODU2-NET is demonstrated to have superior performance in five public datasets, including DUTS, SOD, DUT OMRON, HKU-IS, PASCA
In this paper, we introduce a new method for Bidirectional Quantum Teleportation called Bidirectional Quantum Teleportation using the Modified Dijkstra Algorithm and Quantum Walk (BQT-MDQW). This method uses different...
详细信息
In this paper, we introduce a new method for Bidirectional Quantum Teleportation called Bidirectional Quantum Teleportation using the Modified Dijkstra Algorithm and Quantum Walk (BQT-MDQW). This method uses different types of entangled states, such as the GHZ-Bell state, W-Bell state, and Cluster-Bell state, to improve quantum communication in multi-hop quantum wireless networks. We focus on the W-Bell state and compare the quantum Dijkstra algorithm with the classical Dijkstra method to see which one works better. We apply both versions to quantum and classical simulators, measuring their performance through fidelity, memory utilization, and throughput calculations. Our results show that the shortest path problem may be solved with significantly reduced computer complexity using the quantum Dijkstra algorithm based on quantum walks. The introduction of a quantum walk, which permits dynamic transitions between quantum channels and the effective exploration of quantum network states, is an important part of the protocol. Using the capacity of the quantum walk to adjust to changing quantum states, we also introduce a method for successfully identifying unitary matrices under varying quantum channels. The bidirectional teleportation structure of the protocol is designed to solve the multi-hop teleportation problem in quantum wireless networks. In addition, we present quantum Dijkstra’s algorithm, which uses quantum gates to significantly decrease computational complexity and solve the networking problem by building on the quantum walk framework. This method shows how quantum computing may be used to solve arbitrary optimization issues such as the shortest path problem. Finally, we present a novel multi-hop quantum teleportation system encompassing both unidirectional and bidirectional communication, as introduced in the quantum Dijkstra algorithm system. This system significantly enhances communication in quantum networks by enabling efficient and reliable information
Trial and error learning is an approach with uncertain consequences. How to maintain policy security, stability, and efficiency under controlled circumstances, posing a significant academic challenge. Such as Reinforc...
详细信息
With the urge to secure and protect digital assets, there is a need to emphasize the immediacy of taking measures to ensure robust security due to the enhancement of cyber security. Different advanced methods, like en...
详细信息
With the urge to secure and protect digital assets, there is a need to emphasize the immediacy of taking measures to ensure robust security due to the enhancement of cyber security. Different advanced methods, like encryption schemes, are vulnerable to putting constraints on attacks. To encode the digital data and utilize the unique properties of DNA, like stability and durability, synthetic DNA sequences are offered as a promising alternative by DNA encoding schemes. This study enlightens the exploration of DNA's potential for encoding in evolving cyber security. Based on the systematic literature review, this paper provides a discussion on the challenges, pros, and directions for future work. We analyzed the current trends and new innovations in methodology, security attacks, the implementation of tools, and different metrics to measure. Various tools, such as Mathematica, MATlab, NIST test suite, and Coludsim, were employed to evaluate the performance of the proposed method and obtain results. By identifying the strengths and limitations of proposed methods, the study highlights research challenges and offers future scope for investigation.
Cloud-edge-terminal orchestrated computing, as an expansion of cloud computing, has sunk resources to the edge nodes and terminal equipment, which can provide high-quality services for delay-sensitive applications and...
详细信息
Electric Vehicles (EVs) are becoming more and more popular in our daily life, which replaces traditional fuel vehicles to reduce carbon emissions and protect the environment. EVs need to be charged, but the number of ...
详细信息
暂无评论