The thyroid gland, a pivotal regulator of essential physiological functions, orchestrates the production and release of thyroid hormones, playing a vital role in metabolism, growth, development, and overall bodily fun...
详细信息
Lymphoma is a type of malignant tumor that develops from lymphoid hematopoietic tissues. The precise diagnosis of lymphomas is one of the challenging tasks because of the similarity within the morphological features a...
详细信息
Fish classification and object detection are crucial tasks in the fishery industry. The use of computer vision and deep learning techniques can help automate these tasks and improve the efficiency of the fishery indus...
详细信息
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature...
详细信息
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature, and computational efficiency. Nevertheless, in existing kNN algorithms, the kNN radius, which plays a major role in the quality of kNN estimates, is independent of any weights associated with the training samples in a kNN-neighborhood. This omission, besides limiting the performance and flexibility of kNN, causes difficulties in correcting for covariate shift (e.g., selection bias) in the training data, taking advantage of unlabeled data, domain adaptation and transfer learning. We propose a new weighted kNN algorithm that, given training samples, each associated with two weights, called consensus and relevance (which may depend on the query on hand as well), and a request for an estimate of the posterior at a query, works as follows. First, it determines the kNN neighborhood as the training samples within the kth relevance-weighted order statistic of the distances of the training samples from the query. Second, it uses the training samples in this neighborhood to produce the desired estimate of the posterior (output label or value) via consensus-weighted aggregation as in existing kNN rules. Furthermore, we show that kNN algorithms are affected by covariate shift, and that the commonly used sample reweighing technique does not correct covariate shift in existing kNN algorithms. We then show how to mitigate covariate shift in kNN decision rules by using instead our proposed consensus-relevance kNN algorithm with relevance weights determined by the amount of covariate shift (e.g., the ratio of sample probability densities before and after the shift). Finally, we provide experimental results, using 197 real datasets, demonstrating that the proposed approach is slightly better (in terms of F-1 score) on average than competing benchmark approaches for mit
Weather variability significantly impacts crop yield, posing challenges for large-scale agricultural operations. This study introduces a deep learning-based approach to enhance crop yield prediction accuracy. A Multi-...
详细信息
The right partner and high innovation speed are crucial for a successful research and development (R&D) alliance in the high-tech industry. Does homogeneity or heterogeneity between partners benefit innovation spe...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
Extreme events jeopardize power network operations, causing beyond-design failures and massive supply interruptions. Existing market designs fail to internalize and systematically assess the risk of extreme and rare e...
详细信息
Oil spills represent significant environmental hazards in ocean ecosystems, requiring rapid and accurate detection and response mechanisms. Due to its efficacy, synthetic aperture radar (SAR) is an important tool for ...
详细信息
There are numerous energy minimisation plans that are adopted in today’s data centres (DCs). The highest important ones are those that depend on switching off unused physical machines (PMs). This is usually done by o...
详细信息
暂无评论