Road safety is a critical concern worldwide, with millions of lives lost and countless injuries sustained in traffic accidents annually. To address this pressing issue, a costeffective and reliable solution is propose...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
This paper proposes a voltage source converter (VSC) -based AC-DC hybrid distribution system (HDS) resilient model to mitigate power outages caused by wildfires. Before a wildfire happens, the public-safety power shut...
详细信息
This paper proposes a voltage source converter (VSC) -based AC-DC hybrid distribution system (HDS) resilient model to mitigate power outages caused by wildfires. Before a wildfire happens, the public-safety power shutoff (PSPS) strategy is applied to actively cut some vulnerable lines which may easily cause wildfires, and reinforce some lines that are connected to critical loads. To mitigate load shedding caused by active line disconnection in the PSPS strategy, network reconfiguration is applied before the wildfire occurrence. During the restoration period, repair crews (RCs) repair faulted lines, and network reconfiguration is also taken into consideration in the recovery strategy to pick up critical loads. Since there exists possible errors in the wildfire prediction, several different scenarios of wildfire occurrence have been taken into consideration, leading to the proposition of a stochastic multi-period resilient model for the VSC-based AC-DC HDS. To accelerate the computational performance, a progressive hedging algorithm has been applied to solve the stochastic model which can be written as a mixed-integer linear program. The proposed model is verified on a 106-bus AC-DC HDS under wildfire conditions, and the result shows the proposed model not only can improve the system resilience but also accelerate computational speed.
Accurate prediction of drivers' gaze is an important component of vision-based driver monitoring and assistive systems. Of particular interest are safety-critical episodes, such as performing maneuvers or crossing...
详细信息
Person re-identification (ReID) aims to identify pedestrian images with the same identity across non-overlapping camera views. Intra-camera supervised person re-identification (ICS-ReID) is a new paradigm that trains ...
详细信息
In this paper, we model and characterize an unconventionally wide GaN HEMT device. Each finger of the device has a width of 150 μ m which allows the modeling methodology to examine the wave propagation effects at hig...
详细信息
This paper presents a simple method for predicting inductance in applications of variable inductors with ferrite cores. Today, switching converters are widely used for voltage and current level conversion in renewable...
详细信息
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical *** study prop...
详细信息
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical *** study proposes a novel end-to-end disparity estimation model to address these *** approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting *** study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and *** model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video *** results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing ***,the model exhibited faster convergence during training,contributing to overall performance *** study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
Misinformation is a growing threat to the economy, social stability, public health, democracy, and national security. One of the most effective methods to combat misinformation is fact checking. Fact checking is the p...
详细信息
The amortized step complexity of operations on all previous lock-free implementations of double-ended queues is linear in the number of processes. This paper presents the first concurrent double-ended queue where the ...
详细信息
暂无评论