Interoperability platforms (IOPs) have been and are continuously designed, deployed and used for a variety of scopes, from simple data integration, reducing heterogeneity between data sources, data management systems ...
详细信息
Deep neural networks (DNNs) have emerged as the most effective programming paradigm for computer vision and natural language processing applications. With the rapid development of DNNs, efficient hardware architecture...
详细信息
Deep neural networks (DNNs) have emerged as the most effective programming paradigm for computer vision and natural language processing applications. With the rapid development of DNNs, efficient hardware architectures for deploying DNN-based applications on edge devices have been extensively studied. Emerging nonvolatile memories (NVMs), with their better scalability, nonvolatility, and good read performance, are found to be promising candidates for deploying DNNs. However, despite the promise, emerging NVMs often suffer from reliability issues, such as stuck-at faults, which decrease the chip yield/memory lifetime and severely impact the accuracy of DNNs. A stuck-at cell can be read but not reprogrammed, thus, stuck-at faults in NVMs may or may not result in errors depending on the data to be stored. By reducing the number of errors caused by stuck-at faults, the reliability of a DNN-based system can be enhanced. This article proposes CRAFT, i.e., criticality-aware fault-tolerance enhancement techniques to enhance the reliability of NVM-based DNNs in the presence of stuck-at faults. A data block remapping technique is used to reduce the impact of stuck-at faults on DNNs accuracy. Additionally, by performing bit-level criticality analysis on various DNNs, the critical-bit positions in network parameters that can significantly impact the accuracy are identified. Based on this analysis, we propose an encoding method which effectively swaps the critical bit positions with that of noncritical bits when more errors (due to stuck-at faults) are present in the critical bits. Experiments of CRAFT architecture with various DNN models indicate that the robustness of a DNN against stuck-at faults can be enhanced by up to 105 times on the CIFAR-10 dataset and up to 29 times on ImageNet dataset with only a minimal amount of storage overhead, i.e., 1.17%. Being orthogonal, CRAFT can be integrated with existing fault-tolerance schemes to further enhance the robustness of DNNs aga
We have realized efficient photopatterning and high-quality ZrO_(2)films through combustion synthesis and manufactured resistive random access memory(RRAM)devices with excellent switching stability at low temperatures...
详细信息
We have realized efficient photopatterning and high-quality ZrO_(2)films through combustion synthesis and manufactured resistive random access memory(RRAM)devices with excellent switching stability at low temperatures(250℃)using these *** synthesis reduces the energy required for oxide conversion,thus accelerating the decomposition of organic ligands in the UV-exposed area,and promoting the formation of metal-oxygen networks,contributing to *** analysis confirmed a reduction in the conversion temperature of combustion precursors,and the prepared combustion ZrO_(2)films exhibited a high proportion of metal-oxygen bonding that constitutes the oxide lattice,along with an amorphous ***,the synergistic effect of combustion synthesis and UV/O_(3)-assisted photochemical activation resulted in patterned ZrO_(2)films forming even more complete metal-oxygen *** devices fabricated with patterned ZrO_(2)films using combustion synthesis exhibited excellent switching characteristics,including a narrow resistance distribution,endurance of 103 cycles,and retention for 105 s at 85℃,despite low-temperature *** synthesis not only enables the formation of high-quality metal oxide films with low external energy but also facilitates improved photopatterning.
Recent advancements in Visual Question Answering (VQA) have been driven by the integration of complex attention mechanisms. This work introduces a novel approach aimed at enhancing multi-modal representations through ...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the lung cancer diagnosis, the higher the survival rate. For radiologists, recognizing malignant lung nodules from computed tomography (CT) scans is a challenging and time-consuming process. As a result, computer-aided diagnosis (CAD) systems have been suggested to alleviate these burdens. Deep-learning approaches have demonstrated remarkable results in recent years, surpassing traditional methods in different fields. Researchers are currently experimenting with several deep-learning strategies to increase the effectiveness of CAD systems in lung cancer detection with CT. This work proposes a deep-learning framework for detecting and diagnosing lung cancer. The proposed framework used recent deep-learning techniques in all its layers. The autoencoder technique structure is tuned and used in the preprocessing stage to denoise and reconstruct the medical lung cancer dataset. Besides, it depends on the transfer learning pre-trained models to make multi-classification among different lung cancer cases such as benign, adenocarcinoma, and squamous cell carcinoma. The proposed model provides high performance while recognizing and differentiating between two types of datasets, including biopsy and CT scans. The Cancer Imaging Archive and Kaggle datasets are utilized to train and test the proposed model. The empirical results show that the proposed framework performs well according to various performance metrics. According to accuracy, precision, recall, F1-score, and AUC metrics, it achieves 99.60, 99.61, 99.62, 99.70, and 99.75%, respectively. Also, it depicts 0.0028, 0.0026, and 0.0507 in mean absolute error, mean squared error, and root mean square error metrics. Furthermore, it helps physicians effectively diagnose lung cancer in its early stages and allows spe
The triple active bridge (TAB) is a promising 3-port DC-DC converter technology which performs bi-directional power transfer with galvanic isolation. Due to intensive interactions between parameter selection and a TAB...
详细信息
In recent years, the advancement of AI has been primarily driven by neural networks, which, despite their success, pose challenges in terms of explainability and high-power consumption. Genetic programming (GP) offers...
详细信息
This article proposes a novel design approach for miniaturized, highly selective, self-packaged, and wide-stopband filtering slot antennas based on C- and T-type folded substrate integrated waveguide (C-/T-FSIW) cavit...
详细信息
Many recent FPGA-based Processor-in-Memory (PIM) architectures have appeared with promises of impressive levels of parallelism but with performance that falls short of expectations due to reduced maximum clock frequen...
详细信息
Online learning, particularly Multi-Armed Bandit (MAB) algorithms, has been extensively adopted in various real-world networking applications. In certain applications, such as fair heterogeneous networks coexistence, ...
详细信息
暂无评论