Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing *** study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual *** memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program ***,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 *** larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electricalprogramming abilities of the *** array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%*** study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
This study examines the impact of environmental, social, and governance (ESG) factors on economic investment from a statistical perspective, aiming to develop a tested investment strategy that capitalizes on the conne...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the a...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the adopted datasets for training have correct labeling information. However, such an assumption is not always valid as training data might include measurement samples that are incorrectly labeled as benign, namely, adversarial data poisoning samples, which have not been detected before. Neglecting such an aspect makes detectors susceptible to data poisoning. Our investigations revealed that detection rates (DRs) of existing detectors significantly deteriorate by up to 9-29% when subject to data poisoning in generalized and topology-specific settings. Thus, we propose a generalized graph neural network-based anomaly detector that is robust against FDIAs and data poisoning. It requires only benign datasets for training and employs an autoencoder with Chebyshev graph convolutional recurrent layers with attention mechanism to capture the spatial and temporal correlations within measurement data. The proposed convolutional recurrent graph autoencoder model is trained and tested on various topologies (from 14, 39, and 118-bus systems). Due to such factors, it yields stable generalized detection performance that is degraded by only 1.6-3.7% in DR against high levels of data poisoning and unseen FDIAs in unobserved topologies. Impact Statement-Artificial Intelligence (AI) systems are used in smart grids to detect cyberattacks. They can automatically detect malicious actions carried out bymalicious entities that falsifymeasurement data within power grids. Themajority of such systems are data-driven and rely on labeled data for model training and testing. However, datasets are not always correctly labeled since malicious entities might be carrying out cyberattacks without being detected, which leads to training on mislabeled datasets. Such actions might degrade the d
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemic...
详细信息
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemical sensitivity from the former and the nanoscale spatial resolution from the *** advantages make TERS an essential nanospectroscopic characterization technique for chemical analysis,materials science,bio-sensing,*** probes,the most critical factor determining the TERS imaging quality,are expected to provide a highly confined electromagnetic hotspot with a minimized scattering background for the generation of Raman signals with high spatial *** two decades of development,numerous probe design concepts have been proposed and *** review provides a comprehensive overview of the state-of-the-art TERS probe designs,from the working mechanism to the practical *** start with reviewing the recent development of TERS configurations and the corresponding working mechanisms,including the SPM platforms,optical excitation/collection techniques,and probe preparation *** then review the emerging novel TERS probe designs,including the remote-excitation probes,the waveguide-based nanofocusing probes,the metal-coated nanofocusing probes,the nanowire-assisted selective-coupling probes,and the tapered metal-insulator-metal *** discussion focuses on a few critical aspects,including the surface-plasmon-polariton(SPP)hotspot excitation technique,conversion efficiency,working frequency,and *** the end,we review the latest TERS applications and give a perspective on the future of TERS.
To accommodate the wide range of input voltages supplied by redundant batteries and ensure an adequate hold-up time for communication systems during utility power failures, power supplies used in 5 G base stations typ...
详细信息
Given the severity of waste pollution as a major environmental concern, intelligent and sustainable waste management is becoming increasingly crucial in both developed and developing countries. The material compositio...
详细信息
In offshore aquaculture operations, personnel equipped with diving gear are often necessary to inspect the underwater net cages for damage, particularly on the sea floor. This manual inspection process is time-consumi...
详细信息
Image denoising,one of the essential inverse problems,targets to remove noise/artifacts from input *** general,digital image denoising algorithms,executed on computers,present latency due to several iterations impleme...
详细信息
Image denoising,one of the essential inverse problems,targets to remove noise/artifacts from input *** general,digital image denoising algorithms,executed on computers,present latency due to several iterations implemented in,e.g.,graphics processing units(GPUs).While deep learning-enabled methods can operate non-iteratively,they also introduce latency and impose a significant computational burden,leading to increased power ***,we introduce an analog diffractive image denoiser to all-optically and non-iteratively clean various forms of noise and artifacts from input images–implemented at the speed of light propagation within a thin diffractive visual processor that axially spans<250×λ,whereλis the wavelength of *** all-optical image denoiser comprises passive transmissive layers optimized using deep learning to physically scatter the optical modes that represent various noise features,causing them to miss the output image Field-of-View(FoV)while retaining the object features of *** results show that these diffractive denoisers can efficiently remove salt and pepper noise and image rendering-related spatial artifacts from input phase or intensity images while achieving an output power efficiency of~30–40%.We experimentally demonstrated the effectiveness of this analog denoiser architecture using a 3D-printed diffractive visual processor operating at the terahertz *** to their speed,power-efficiency,and minimal computational overhead,all-optical diffractive denoisers can be transformative for various image display and projection systems,including,e.g.,holographic displays.
Global trading is undergoing significant changes, necessitating modifications to the trading strategies. This study presents a newly developed cloud-based trading strategy that uses Amazon Web Services (AWS), machine ...
详细信息
暂无评论