咨询与建议

限定检索结果

文献类型

  • 526 篇 会议
  • 178 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 705 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 328 篇 工学
    • 160 篇 计算机科学与技术...
    • 141 篇 软件工程
    • 100 篇 电气工程
    • 93 篇 信息与通信工程
    • 67 篇 光学工程
    • 58 篇 电子科学与技术(可...
    • 43 篇 生物医学工程(可授...
    • 42 篇 仪器科学与技术
    • 36 篇 控制科学与工程
    • 33 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 环境科学与工程(可...
    • 14 篇 土木工程
    • 14 篇 测绘科学与技术
    • 14 篇 化学工程与技术
    • 13 篇 航空宇航科学与技...
    • 11 篇 建筑学
    • 10 篇 材料科学与工程(可...
  • 213 篇 理学
    • 100 篇 数学
    • 96 篇 物理学
    • 39 篇 生物学
    • 38 篇 统计学(可授理学、...
    • 18 篇 化学
    • 17 篇 大气科学
    • 12 篇 地球物理学
  • 49 篇 管理学
    • 31 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
  • 30 篇 医学
    • 29 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 16 篇 农学
  • 8 篇 法学
  • 5 篇 艺术学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 83 篇 remote sensing
  • 78 篇 image processing
  • 75 篇 laboratories
  • 48 篇 signal processin...
  • 44 篇 radar measuremen...
  • 41 篇 image segmentati...
  • 38 篇 hyperspectral im...
  • 36 篇 sea measurements
  • 33 篇 image coding
  • 32 篇 pixel
  • 31 篇 feature extracti...
  • 31 篇 shape
  • 30 篇 image analysis
  • 27 篇 frequency
  • 27 篇 image reconstruc...
  • 24 篇 support vector m...
  • 24 篇 hyperspectral se...
  • 23 篇 data mining
  • 23 篇 sea surface
  • 21 篇 radar scattering

机构

  • 21 篇 signal and image...
  • 19 篇 control and inte...
  • 16 篇 remote sensing s...
  • 15 篇 department of el...
  • 15 篇 remote sensing s...
  • 13 篇 remote sensing s...
  • 12 篇 state key labora...
  • 11 篇 video and image ...
  • 10 篇 remote sensing s...
  • 10 篇 radar systems an...
  • 9 篇 department of ra...
  • 9 篇 microwave remote...
  • 8 篇 microwave remote...
  • 7 篇 central florida ...
  • 6 篇 image analysis l...
  • 6 篇 department of el...
  • 6 篇 state key labora...
  • 6 篇 computer vision ...
  • 6 篇 control and inte...
  • 6 篇 remote sensing d...

作者

  • 37 篇 chein-i chang
  • 26 篇 chang chein-i
  • 21 篇 hamid soltanian-...
  • 16 篇 chang chein-i.
  • 15 篇 gardner wa
  • 12 篇 soltanian-zadeh ...
  • 12 篇 s.k. mitra
  • 12 篇 e.j. delp
  • 11 篇 edward j. delp
  • 11 篇 w.l. jones
  • 10 篇 a.a. farag
  • 10 篇 aly a. farag
  • 10 篇 wu chao-cheng
  • 9 篇 zezhong zheng
  • 9 篇 qian du
  • 9 篇 jiang li
  • 9 篇 r.e. mcintosh
  • 9 篇 guoqing zhou
  • 8 篇 j. zec
  • 8 篇 mingcang zhu

语言

  • 686 篇 英文
  • 16 篇 其他
  • 3 篇 中文
检索条件"机构=Electrical and Computer Engineering Department Remote Sensing and Image Processing Laboratory"
705 条 记 录,以下是131-140 订阅
排序:
DLIMD: Dictionary learning based image-domain material decomposition for spectral CT
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Weiwen Yu, Haijun Chen, Peijun Luo, Fulin Liu, Fenglin Wang, Qian Zhu, Yining Zhang, Yanbo Feng, Jian Yu, Hengyong Key Lab of Optoelectronic Technology and Systems Ministry of Education Chongqing University Chongqing400044 China State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan430079 China Department of Electrical and Computer Engineering University of Massachusetts Lowell LowellMA01854 United States School of Mathematical Sciences Capital Normal University Beijing100048 China Beijing Higher Institution Engineering Research Center of Testing and Imaging Beijing100048 China PingAn Technology US Research Lab Palo AltoCA94306 United States
The potential huge advantage of spectral computed tomography (CT) is its capability to provide accuracy material identification and quantitative tissue information. This can benefit clinical applications, such as brai... 详细信息
来源: 评论
Person Re-identification by Integrating Static Texture and Shape Cues  12th
Person Re-identification by Integrating Static Texture and S...
收藏 引用
12th Chinese Conference on Biometric Recognition, CCBR 2017
作者: Madongo, Canaan Tinotenda Huang, Di Chen, Jiaxin Laboratory of Intelligent Recognition and Image Processing School of Computer Science and Engineering Beihang University Beijing100191 China Department of Electrical and Computer Engineering New York University Abu Dhabi Abu Dhabi United Arab Emirates
Person Re-Identification (Re-ID) is a challenging task with wide ranging applications in various fields. This paper presents a novel hand-crafted method for this issue, enhancing the state of the art ones in literatur... 详细信息
来源: 评论
A Semantic Feature Extraction Method For Hyperspectral image Classification Based On Hashing Learning
A Semantic Feature Extraction Method For Hyperspectral Image...
收藏 引用
Workshop on Hyperspectral image and Signal processing: Evolution in remote sensing, WHISPERS
作者: Meng Zhao Chunyan Yu Meiping Song Chein-I Chang Center for Hyperspectral Imaging in Remote Sensing (CHIRS) Dalian Maritime University Dalian China State Key Laboratory of Integrated Services Networks Xidian University Xian China Department of Computer Science and Electrical Engineering University of Maryland Baltimore MD USA
Aiming at extraction the semantic feature of hyperspectral image, a semantic feature extraction method based on supervised hashing learning is proposed in the paper. Firstly, a set of hash functions are defined based ... 详细信息
来源: 评论
A Geometric Approach to Second-Order Consensus of Heterogeneous Networked Systems
收藏 引用
IEEE Transactions on Cybernetics 2018年 2018 Jan 9页
作者: Su, Housheng Ye, Yanyan Chen, Xia He, Haibo School of Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology Wuhan 430074 China. China China Department of Electrical Computer and Biomedical Engineering University of Rhode Island Kingston RI 02881 USA. United States
This paper investigates second-order consensus of networked systems with heterogeneous intrinsic nonlinear dynamics via a geometrical method, in which the nonlinear dynamics are governed by both velocity and position.... 详细信息
来源: 评论
R3-Net: A deep network for multi-oriented vehicle detection in aerial images and videos
arXiv
收藏 引用
arXiv 2018年
作者: Li, Qingpeng Mou, Lichao Xu, Qizhi Zhang, Yun Zhu, Xiao Xiang State Key Laboratory of Virtual Reality Technology and Systems Beijing Key Laboratory of Digital Media School of Computer Science and Engineering Beihang University Beijing100191 China Remote Sensing Technology Institute German Aerospace Center Wessling82234 Germany Signal Processing in Earth Observation Technical University of Munich Munich80333 Germany Canada Research Chair Laboratory in Advanced Geomatics Image Processing Department of Geodesy and Geomatics Engineering University of New Brunswick FrederictonNBE3B 5A3 Canada
Vehicle detection is a significant and challenging task in aerial remote sensing applications. Most existing methods detect vehicles with regular rectangle boxes and fail to offer the orientation of vehicles. However,... 详细信息
来源: 评论
An adaptable deep learning model for ionospheric pattern analysis on spaceborne interferometric SAR systems
An adaptable deep learning model for ionospheric pattern ana...
收藏 引用
AIAA Space and Astronautics Forum and Exposition, 2018
作者: Massinas, Basil A. Doulamis, Anastasios Doulamis, Nikolaos Voulodimos, Athanasios Frangos, Panayiotis Paradissis, Demitris Zografou Athens15780 Greece Dionysos Satellite Observatory National Technical University of Athens 9 Heroon Polytechniou St. Zografou Athens15780 Greece Department of Surveying Engineering National Technical University of Athens 9 Heroon Polytechniou Str Zografou Athens15780 Greece Department of Informatics and Computer Engineering University of West Attica Egaleo Athens12243 Greece School of Electrical and Computer Engineering National Technical University of Athens Greece Department of Surveying Engineering Dionysos Satellite Observatory National Technical University of Athens 9 Heroon Polytechniou Str. Zografou Athens15780 Greece Radar Systems & Remote Sensing Laboratory National Technical University of Athens 9 Heroon Polytechniou Str. Zografou Athens15780 Greece
The study of ionospheric phenomena trigger great interest but also present significant research challenges along a vast range of scientific and technological applications. The optimal estimation of the ionospheric dis... 详细信息
来源: 评论
Deep learning enabled fast optical characterization of two-dimensional materials
arXiv
收藏 引用
arXiv 2019年
作者: Han, Bingnan Lin, Yuxuan Yang, Yafang Mao, Nannan Li, Wenyue Wang, Haozhe Fatemi, Valla Zhou, Lin Wang, Joel I-Jan Ma, Qiong Cao, Yuan Rodan-Legrain, Daniel Bie, Ya-Qing Navarro-Moratalla, Efrén Klein, Dahlia MacNeill, David Wu, Sanfeng Leong, Wei Sun Kitadai, Hikari Ling, Xi Jarillo-Herrero, Pablo Palacios, Tomás Yin, Jihao Kong, Jing Image Processing Center School of Astronautics Beihang University Beijing100191 China Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA02139 United States Department of Physics Massachusetts Institute of Technology CambridgeMA02139 United States Department of Chemistry Boston University BostonMA02215 United States Research Laboratory of Electronics Massachusetts Institute of Technology CambridgeMA02139 United States Instituto de Ciencia Molecular Universidad de Valencia c/Catedrático José Beltrán 2 Paterna46980 Spain Division of Materials Science and Engineering Boston University BostonMA02215 United States
Characterization of nanomaterial morphologies with advanced microscopy and/or spectroscopy tools plays an indispensable role in nanoscience and nanotechnology research 1 2, 3, 4, 5, as rich information about the chemi... 详细信息
来源: 评论
Dimensionality reduction of hyperspectral imagery based on spatial-spectral manifold learning
arXiv
收藏 引用
arXiv 2018年
作者: Huang, Hong Shi, Guangyao He, Haibo Duan, Yule Luo, Fulin Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China Chongqing University Chongqing400044 China Department of Electrical Computer and Biomedical Engineering University of Rhode Island KingstonRI02881 United States State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan430079 China
The graph embedding (GE) methods have been widely applied for dimensionality reduction of hyperspectral imagery (HSI). However, a major challenge of GE is how to choose proper neighbors for graph construction and expl... 详细信息
来源: 评论
Morphological geodesic active contour based automatic aorta segmentation in thoracic CT images
Morphological geodesic active contour based automatic aorta ...
收藏 引用
International Conference on computer Vision and image processing, CVIP 2016
作者: Dasgupta, Avijit Mukhopadhyay, Sudipta Mehre, Shrikant A. Bhattacharyya, Parthasarathi Computer Vision and Image Processing Laboratory Department of Electronics and Electrical Communication Engineering Indian Institute of Technology Kharagpur West Bengal721302 India Institute of Pulmocare & Research KolkataWest Bengal700156 India
Automatic aorta segmentation and quantification in thoracic computed tomography (CT) images is important for detection and prevention of aortic diseases. This paper proposes an automatic aorta segmentation algorithm i... 详细信息
来源: 评论
Efficient T2 mapping with Blip-up/down EPI and gSlider-SMS (T2-BUDA-gSlider)
arXiv
收藏 引用
arXiv 2019年
作者: Cao, Xiaozhi Liao, Congyu Zhang, Zijing Iyer, Siddharth Srinivasan Chen, Zhifeng Lo, Wei-Ching Liu, Huafeng Wang, Kang He, Hongjian Setsompop, Kawin Zhong, Jianhui Bilgic, Berkin Center for Brain Imaging Science and Technology Department of Biomedical Engineering Zhejiang University Zhejiang Hangzhou China Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital CharlestownMA United States Department of Radiology Harvard Medical School CharlestownMA United States State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Zhejiang Hangzhou China Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States School of Biomedical Engineering Guangdong Provincial Key Laboratory of Medical Image Processing Southern Medical University Guangzhou China Siemens Medical Solutions BostonMA United States Department of Neurology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China Harvard-MIT Department of Health Sciences and Technology CambridgeMA United States Department of Imaging Sciences University of Rochester NY United States
Purpose: To rapidly obtain high isotropic-resolution T2 maps with whole-brain coverage and high geometric fidelity. Methods: A T2 blip-up/down echo planar imaging (EPI) acquisition with generalized Slice-dithered enha... 详细信息
来源: 评论