咨询与建议

限定检索结果

文献类型

  • 526 篇 会议
  • 178 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 705 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 328 篇 工学
    • 160 篇 计算机科学与技术...
    • 141 篇 软件工程
    • 100 篇 电气工程
    • 93 篇 信息与通信工程
    • 67 篇 光学工程
    • 58 篇 电子科学与技术(可...
    • 43 篇 生物医学工程(可授...
    • 42 篇 仪器科学与技术
    • 36 篇 控制科学与工程
    • 33 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 环境科学与工程(可...
    • 14 篇 土木工程
    • 14 篇 测绘科学与技术
    • 14 篇 化学工程与技术
    • 13 篇 航空宇航科学与技...
    • 11 篇 建筑学
    • 10 篇 材料科学与工程(可...
  • 213 篇 理学
    • 100 篇 数学
    • 96 篇 物理学
    • 39 篇 生物学
    • 38 篇 统计学(可授理学、...
    • 18 篇 化学
    • 17 篇 大气科学
    • 12 篇 地球物理学
  • 49 篇 管理学
    • 31 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
  • 30 篇 医学
    • 29 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 16 篇 农学
  • 8 篇 法学
  • 5 篇 艺术学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 83 篇 remote sensing
  • 78 篇 image processing
  • 75 篇 laboratories
  • 48 篇 signal processin...
  • 44 篇 radar measuremen...
  • 41 篇 image segmentati...
  • 38 篇 hyperspectral im...
  • 36 篇 sea measurements
  • 33 篇 image coding
  • 32 篇 pixel
  • 31 篇 feature extracti...
  • 31 篇 shape
  • 30 篇 image analysis
  • 27 篇 frequency
  • 27 篇 image reconstruc...
  • 24 篇 support vector m...
  • 24 篇 hyperspectral se...
  • 23 篇 data mining
  • 23 篇 sea surface
  • 21 篇 radar scattering

机构

  • 21 篇 signal and image...
  • 19 篇 control and inte...
  • 16 篇 remote sensing s...
  • 15 篇 department of el...
  • 15 篇 remote sensing s...
  • 13 篇 remote sensing s...
  • 12 篇 state key labora...
  • 11 篇 video and image ...
  • 10 篇 remote sensing s...
  • 10 篇 radar systems an...
  • 9 篇 department of ra...
  • 9 篇 microwave remote...
  • 8 篇 microwave remote...
  • 7 篇 central florida ...
  • 6 篇 image analysis l...
  • 6 篇 department of el...
  • 6 篇 state key labora...
  • 6 篇 computer vision ...
  • 6 篇 control and inte...
  • 6 篇 remote sensing d...

作者

  • 37 篇 chein-i chang
  • 26 篇 chang chein-i
  • 21 篇 hamid soltanian-...
  • 16 篇 chang chein-i.
  • 15 篇 gardner wa
  • 12 篇 soltanian-zadeh ...
  • 12 篇 s.k. mitra
  • 12 篇 e.j. delp
  • 11 篇 edward j. delp
  • 11 篇 w.l. jones
  • 10 篇 a.a. farag
  • 10 篇 aly a. farag
  • 10 篇 wu chao-cheng
  • 9 篇 zezhong zheng
  • 9 篇 qian du
  • 9 篇 jiang li
  • 9 篇 r.e. mcintosh
  • 9 篇 guoqing zhou
  • 8 篇 j. zec
  • 8 篇 mingcang zhu

语言

  • 686 篇 英文
  • 16 篇 其他
  • 3 篇 中文
检索条件"机构=Electrical and Computer Engineering Department Remote Sensing and Image Processing Laboratory"
705 条 记 录,以下是291-300 订阅
排序:
Component analysis-based unsupervised linear spectral mixture analysis for hyperspectral imagery
Component analysis-based unsupervised linear spectral mixtur...
收藏 引用
WHISPERS '09 - 1st Workshop on Hyperspectral image and Signal processing: Evolution in remote sensing
作者: Jiao, Xiaoli Du, Yingzi Chang, Chein-I. Remote Sensing Signal and Image Processing Laboratry Department of Computer Science and Electrical Engineering University of Maryland Baltimore County MD 21228 United States Department of Electrical and Computer Engineering Purdue School of Engineering and Technology Indiana University-Purdue University Indianapolis Indianapolis IN 46202 United States Department of Electrical Engineering National Chung Hsing University Taichung Taiwan
One of the most challenging issues in unsupervised linear spectral mixture analysis (LSMA) is how to obtain unknown knowledge of target signatures referred to as virtual endmembers (VEs) directly from the data to be p... 详细信息
来源: 评论
A wind and rain backscatter model derived from AMSR and SeaWinds data
A wind and rain backscatter model derived from AMSR and SeaW...
收藏 引用
作者: Nielsen, Seth N. Long, David G. Microwave Earth Remote Sensing Laboratory Electrical and Computer Engineering Department Brigham Young University Provo UT 84602 United States
The SeaWinds scatterometer was originally designed to measure wind vectors over the ocean by exploiting the relationship between wind-induced surface roughening and the normalized radar backscatter cross section. Rain... 详细信息
来源: 评论
Interest point detection for hyperspectral imagery
Interest point detection for hyperspectral imagery
收藏 引用
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral imagery XV
作者: Dorado-Munoz, Leidy P. Velez-Reyes, Miguel Roysam, Badrinath Mukherjee, Amit Center for Subsurface Sensing and Imaging Systems Laboratory for Applied Remote Sensing and Image Processing University of Puerto Rico at Mayaguez Mayaguez PR.00681-9048 United States Center for Subsurface Sensing and Imaging Systems Department of Electrical Computer and Systems Engineering Rensseleaer Polytechnic Institute Troy NY. 12180-3590 United States
This paper presents an algorithm for automated extraction of interest points (IPs)in multispectral and hyperspectral images. Interest points are features of the image that capture information from its neighbours and t... 详细信息
来源: 评论
Comparison of spectral-spatial classification for urban hyperspectral imagery with high resolution
Comparison of spectral-spatial classification for urban hype...
收藏 引用
2009 Joint Urban remote sensing Event
作者: He, Yang Ben, Ma Qian, Du Liangpei, Zhang Department of Electrical and Computer Engineering Mississippi State University Mississippi State MS United States State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan China
For urban hyperspectral imagery with high spatial resolution, both spectral and spatial information are important and should be combined together to improve classification accuracy. In this paper, different combinatio... 详细信息
来源: 评论
Kernel-based Linear Spectral Mixture Analysis for hyperspectral image classification
Kernel-based Linear Spectral Mixture Analysis for hyperspect...
收藏 引用
Workshop on Hyperspectral image and Signal processing: Evolution in remote sensing, WHISPERS
作者: Keng-Hao Liu Englin Wong Chein-I Chang Remote Sensing Signal and Image Processing Laboratory the Department of Computer Science and Electrical Engineering Department University of Maryland Baltimore MD USA Department of Electrical Engineering National Chung Hsing University Taichung Taiwan
Linear spectral mixture analysis (LSMA) has been widely used in remote sensing community. Recently, kernel-based approaches have received considerable interest in hyperspectral image analysis where nonlinear kernels a... 详细信息
来源: 评论
Automatic segmentation of brain structures using geometric moment invariants and artificial neural networks
Automatic segmentation of brain structures using geometric m...
收藏 引用
21st International Conference on Information processing in Medical Imaging, IPMI 2009
作者: Jabarouti Moghaddam, Mostafa Soltanian-Zadeh, Hamid Control and Intelligent Processing Center of Excellence Department of Electrical and Computer Engineering University of Tehran Tehran Iran Image Analysis Laboratory Department of Radiology Henry Ford Hospital Detroit MI United States
We propose an automatic method for the segmentation of the brain structures in three dimensional (3D) Magnetic Resonance images (MRI). The proposed method consists of two stages. In the first stage, we represent the s... 详细信息
来源: 评论
Color quantization using principal components for initialization of Kohonen SOFM
Color quantization using principal components for initializa...
收藏 引用
IEEE International Conference on image processing
作者: Dimitris Mavridis Nikos Papamarkos Image Processing and Multimedia Laboratory Department of Electrical & Computer Engineering Democritus University of Thrace Greece
A new method is proposed for initializing Kohonen's self-organizing feature maps (SOFM) of fixed zero neighborhood radius for use in color quantization. The method employs the two largest principal components of t... 详细信息
来源: 评论
Component analysis-based unsupervised linear spectral mixture analysis for hyperspectral imagery
Component analysis-based unsupervised linear spectral mixtur...
收藏 引用
Workshop on Hyperspectral image and Signal processing: Evolution in remote sensing, WHISPERS
作者: Xiaoli Jiao Yingzi Du Chein-I Chang Remote Sensing Signal and Image Processing Laboratory Department of Computer Science & Electrical Engineering University of Maryland Baltimore MD USA Department of Electrical and Computer Engineering Purdue School of Engineering and Technology Indiana University-Purdue University Indianapolis Indianapolis IN USA Department of Electrical Engineering National Chung Hsing University Taichung Taiwan
One of the most challenging issues in unsupervised linear spectral mixture analysis (LSMA) is how to obtain unknown knowledge of target signatures referred to as virtual endmembers (VEs) directly from the data to be p... 详细信息
来源: 评论
Interface-based hierarchy for synchronous data-flow graphs
Interface-based hierarchy for synchronous data-flow graphs
收藏 引用
IEEE Workshop on Signal processing Systems (SIPS)
作者: Jonathan Piat Shuvra S. Bhattacharyya Mickael Raulet IETRIINSA UMR CNRS 6164 Image and Remote Sensing laboratory Rennes France Department of Electrical and Computer Engineering University of Maryland College Park MD USA
Dataflow has proven to be an attractive computation model for programming digital signal processing (DSP) applications. A restricted version of dataflow, termed synchronous dataflow (SDF), offers strong compile-time p... 详细信息
来源: 评论
Brain tissue classification using independent vector analysis (IVA) for magnetic resonance image
Brain tissue classification using independent vector analysi...
收藏 引用
2009 9th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2009
作者: Chiou, Yaw-Jiunn Chen, Hsiang-Min Chai, Jyh Wen Chen, Clayton Chi-Chang Ouyang, Yen-Chieh Su, Wu-Chung Yang, Ching-Wen Lee, San-Kan Chang, Chein-I. Department of Electrical Engineering National Chung Hsing University Taichung Taiwan Department of Radiology College of Medicine China Medical University Taichung Taiwan School of Medicine National Yang-Ming University Taipei Taiwan Department of Radiology Taichung Veterans General Hospital Taichung Taiwan Department of Radiological Technology Central Taiwan University of Science and Technology Taichung 406 Taiwan Computer Center Taichung Veterans General Hospital Taichung 407 Taiwan Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland Baltimore County Baltimore MD 21250 United States
The purpose of this study is to present a new method, independent vector analysis (IVA), by extending independent component analysis (ICA) of univariate source signals to multivariate source signals on Magnetic Resona... 详细信息
来源: 评论