Unmanned Aerial Vehicles (UAVs) have extensive applications such as logistics transportation and aerial photography. However, UAVs are sensitive to winds. Traditional control methods, such as proportional- integral-de...
详细信息
Unmanned Aerial Vehicles (UAVs) have extensive applications such as logistics transportation and aerial photography. However, UAVs are sensitive to winds. Traditional control methods, such as proportional- integral-derivative controllers, generally fail to work well when the strength and direction of winds are changing frequently. In this work deep reinforcement learning algorithms are combined with a domain randomization method to learn robust wind-resistant hovering policies. A novel reward function is designed to guide learning. This reward function uses a constant reward to maintain a continuous flight of a UAV as well as a weight of the horizontal distance error to ensure the stability of the UAV at altitude. A five-dimensional representation of actions instead of the traditional four dimensions is designed to strengthen the coordination of wings of a UAV. We theoretically explain the rationality of our reward function based on the theories of Q-learning and reward shaping. Experiments in the simulation and real-world application both illustrate the effectiveness of our method. To the best of our knowledge, it is the first paper to use reinforcement learning and domain randomization to explore the problem of robust wind-resistant hovering control of quadrotor UAVs, providing a new way for the study of wind-resistant hovering and flying of UAVs. IEEE
To better enhance the network service for different user devices in various scenarios, unmanned aerial vehicles (UAVs) are increasingly used as aerial base stations (ABSs). However, optimizing coverage for user device...
详细信息
This study examines the impact of environmental, social, and governance (ESG) factors on economic investment from a statistical perspective, aiming to develop a tested investment strategy that capitalizes on the conne...
详细信息
The offering strategy of energy storage in energy and frequency response(FR) markets needs to account for country-specific market regulations around FR products as well as FR utilization factors, which are highly unce...
详细信息
The offering strategy of energy storage in energy and frequency response(FR) markets needs to account for country-specific market regulations around FR products as well as FR utilization factors, which are highly uncertain. To this end, a novel optimal offering model is proposed for stand-alone price-taking storage participants, which accounts for recent FR market design developments in the UK, namely the trade of FR products in time blocks, and the mutual exclusivity among the multiple FR products. The model consists of a day-ahead stage, devising optimal offers under uncertainty, and a real-time stage, representing the storage operation after uncertainty is materialized. Furthermore, a concrete methodological framework is developed for comparing different approaches around the anticipation of uncertain FR utilization factors(deterministic one based on expected values, deterministic one based on worst-case values, stochastic one, and robust one), by providing four alternative formulations for the real-time stage of the proposed offering model, and carrying out an out-of-sample validation of the four model instances. Finally, case studies employing real data from UK energy and FR markets compare these four instances against achieved profits, FR delivery violations, and computational scalability.
Clustering strategies for reducing the energy consumption and extending the network life have been employed widely in Wireless Sensor Network (WSN). The clustering mechanism can extend the network’s service life and ...
详细信息
The relay channel, consisting of a source-destination pair along with a relay, is a fundamental component of cooperative communications. While the capacity of a general relay channel remains unknown, various relaying ...
详细信息
We explore the impact of coarse quantization on matrix completion in the extreme scenario of dithered one-bit sensing, where the matrix entries are compared with random dither levels. In particular, instead of observi...
详细信息
We explore the impact of coarse quantization on matrix completion in the extreme scenario of dithered one-bit sensing, where the matrix entries are compared with random dither levels. In particular, instead of observing a subset of high-resolution entries of a low-rank matrix, we have access to a small number of one-bit samples, generated as a result of these comparisons. In order to recover the low-rank matrix using its coarsely quantized known entries, we begin by transforming the problem of one-bit matrix completion (one-bit MC) with random dithering into a nuclear norm minimization problem. The one-bit sampled information is represented as linear inequality feasibility constraints. We then develop the popular singular value thresholding (SVT) algorithm to accommodate these inequality constraints, resulting in the creation of the One-Bit SVT (OBSVT). Our findings demonstrate that incorporating multiple random dither sequences in one-bit MC can significantly improve the performance of the matrix completion algorithm. In pursuit of achieving this objective, we utilize diverse dithering schemes, namely uniform, Gaussian, and discrete dithers. To accelerate the convergence of our proposed algorithm, we introduce three variants of the OB-SVT algorithm. Among these variants is the randomized sketched OB-SVT, which departs from using the entire information at each iteration, opting instead to utilize sketched data. This approach effectively reduces the dimension of the operational space and accelerates the convergence. We perform numerical evaluations comparing our proposed algorithm with the maximum likelihood estimation method previously employed for one-bit MC, and demonstrate that our approach can achieve a better recovery performance. Authors
Millimeter-wave network deployment is an essential and ongoing problem due to the limited coverage and expensive network infrastructure. In this work, we solve a joint network deployment and resource allocation optimi...
详细信息
Millimeter-wave network deployment is an essential and ongoing problem due to the limited coverage and expensive network infrastructure. In this work, we solve a joint network deployment and resource allocation optimization problem for a mmWave cell-free massive MIMO network considering indoor environments. The objective is to minimize the number of deployed access points (APs) for a given environment, bandwidth, AP cooperation, and precoding scheme while guaranteeing the rate requirements of the user equipments (UEs). Considering coherent joint transmission (C-JT) and non-coherent joint transmission (NC-JT), we solve the problem of AP placement, UE-AP association, and power allocation among the UEs and resource blocks jointly. For numerical analysis, we model a mid-sized airplane cabin in ray-tracing as an exemplary case for IDS. Results demonstrate that a minimum data rate of 1 Gbps can be guaranteed with less than 10 APs with C-JT. From a holistic network design perspective, we analyze the trade-off between the required fronthaul capacity and the processing capacity per AP, under different network functional split options. We observe an above 600 Gbps fronthaul rate requirement, once all network operations are centralized, which can be reduced to 200 Gbps under physical layer functional splits. 2002-2012 IEEE.
The field of computer vision is predominantly driven by supervised models, which, despite their efficacy, are computationally expensive and often intractable for many applications. Recently, research has expedited alt...
详细信息
作者:
Byun, HyungjoASRI
Department of Electrical and Computer Engineering Seoul National University Korea Republic of
Controlling nonlinear systems with linear feedback controller after linearization is a widely used method. This paper proposes a new method to efficiently train a reinforcement learning agent to select the control gai...
详细信息
暂无评论