Inefficient task scheduling schemes compromise network performance and increase latency for delay intolerant tasks. Cybertwin based 6G services support data logging of operational queries for appropriate resource allo...
详细信息
This paper establishes a model-free finite-time tracking control of nonlinear robotic manipulator systems. The proposed controller incorporates both Time Delay Estimation (TDE) and an enhanced Terminal Sliding Mode Co...
详细信息
Vehicular Adhoc Networks(VANETs)enable vehicles to act as mobile nodes that can fetch,share,and disseminate information about vehicle safety,emergency events,warning messages,and passenger ***,the continuous dissemina...
详细信息
Vehicular Adhoc Networks(VANETs)enable vehicles to act as mobile nodes that can fetch,share,and disseminate information about vehicle safety,emergency events,warning messages,and passenger ***,the continuous dissemination of information fromvehicles and their one-hop neighbor nodes,Road Side Units(RSUs),and VANET infrastructures can lead to performance degradation of VANETs in the existing hostcentric IP-based ***,Information Centric Networks(ICN)are being explored as an alternative architecture for vehicular communication to achieve robust content distribution in highly mobile,dynamic,and errorprone *** ICN-based Vehicular-IoT networks,consumer mobility is implicitly supported,but producer mobility may result in redundant data transmission and caching inefficiency at intermediate vehicular *** paper proposes an efficient redundant transmission control algorithm based on network coding to reduce data redundancy and accelerate the efficiency of information *** proposed protocol,called Network Cording Multiple Solutions Scheduling(NCMSS),is receiver-driven collaborative scheduling between requesters and information sources that uses a global parameter expectation deadline to effectively manage the transmission of encoded data packets and control the selection of information *** results for the proposed NCMSS protocol is demonstrated to analyze the performance of ICN-vehicular-IoT networks in terms of caching,data retrieval delay,and end-to-end application *** end-to-end throughput in proposed NCMSS is 22%higher(for 1024 byte data)than existing solutions whereas delay in NCMSS is reduced by 5%in comparison with existing solutions.
In blockchain networks, transactions can be transmitted through channels. The existing transmission methods depend on their routing information. If a node randomly chooses a channel to transmit a transaction, the tran...
详细信息
In blockchain networks, transactions can be transmitted through channels. The existing transmission methods depend on their routing information. If a node randomly chooses a channel to transmit a transaction, the transmission may be aborted due to insufficient funds(also called balance) or a low transmission rate. To increase the success rate and reduce transmission delay across all transactions, this work proposes a transaction transmission model for blockchain channels based on non-cooperative game *** balance, channel states, and transmission probability are fully considered. This work then presents an optimized channel transaction transmission algorithm. First, channel balances are analyzed and suitable channels are selected if their balance is sufficient. Second, a Nash equilibrium point is found by using an iterative sub-gradient method and its related channels are then used to transmit transactions. The proposed method is compared with two state-of-the-art approaches: Silent Whispers and Speedy Murmurs. Experimental results show that the proposed method improves transmission success rate, reduces transmission delay,and effectively decreases transmission overhead in comparison with its two competitive peers.
Heart disease is a critical concern of healthcare for everyone in today’s era. An effective and noninvasive indication of heart disease is an electrocardiogram (ECG). Understanding regular ECG signal patterns and com...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and ...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and acquire contextual information hinders their *** propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address *** proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human *** used text augmentation techniques to producemore training data,improving the proposed model’s *** encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual *** integration improves the accuracy and robustness of the proposed ***,we present a method for balancing the training dataset by creating enhanced samples from the original *** balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed *** results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ***-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based *** balanced dataset and the additional training samples also enhance its *** findings highlight the significance of transformer-based approaches for special emotion recognition in conversations.
The paper addresses the critical problem of application workflow offloading in a fog environment. Resource constrained mobile and Internet of Things devices may not possess specialized hardware to run complex workflow...
详细信息
It is a significant and challenging task to detect the informative features to carry out explainable analysis for high dimensional data,especially for those with very small number of *** selection especially the unsup...
详细信息
It is a significant and challenging task to detect the informative features to carry out explainable analysis for high dimensional data,especially for those with very small number of *** selection especially the unsupervised ones are the right way to deal with this challenge and realize the ***,two unsupervised spectral feature selection algorithms are proposed in this *** group features using advanced Self-Tuning spectral clustering algorithm based on local standard deviation,so as to detect the global optimal feature clusters as far as *** two feature ranking techniques,including cosine-similarity-based feature ranking and entropy-based feature ranking,are proposed,so that the representative feature of each cluster can be detected to comprise the feature subset on which the explainable classification system will be *** effectiveness of the proposed algorithms is tested on high dimensional benchmark omics datasets and compared to peer methods,and the statistical test are conducted to determine whether or not the proposed spectral feature selection algorithms are significantly different from those of the peer *** extensive experiments demonstrate the proposed unsupervised spectral feature selection algorithms outperform the peer ones in comparison,especially the one based on cosine similarity feature ranking *** statistical test results show that the entropy feature ranking based spectral feature selection algorithm performs *** detected features demonstrate strong discriminative capabilities in downstream classifiers for omics data,such that the AI system built on them would be reliable and *** is especially significant in building transparent and trustworthy medical diagnostic systems from an interpretable AI perspective.
Globally, skin diseases are emerging as the most common health problem. It initiates depressive disorder, and it also causes physical health distress. It rarely led to skin cancer in extreme cases. Diagnosing skin dis...
详细信息
This paper investigates dynamic anomaly detection in resource-constrained environments by leveraging Robust Random Cut Forests (RRCF). Anomaly detection is crucial for maintaining the integrity and security of data st...
详细信息
This paper investigates dynamic anomaly detection in resource-constrained environments by leveraging Robust Random Cut Forests (RRCF). Anomaly detection is crucial for maintaining the integrity and security of data streams in Internet of Things (IoT) environments, where data is continuously generated and often subject to noise and fluctuations. We begin with a comprehensive exploration of resilient random cut data structures tailored for analyzing incoming data streams, highlighting their effectiveness in adapting to the dynamic nature of *** methodology encompasses extensive experimentation with diverse datasets, including real-time Arduino data and benchmark datasets such as IoT-23 and CIC-IoT. Through this approach, we assess the performance of the RRCF algorithm under various scenarios, focusing on its capability to accurately identify trends and anomalies over time. Notably, we achieve significant performance improvements, with an average Area Under the Curve (AUC) of 95.6 and an F1 score of 0.86, demonstrating RRCF’s effectiveness in real-time anomaly *** further enhance detection accuracy, we introduce dynamic thresholds that adapt to changing data characteristics, allowing our model to maintain robust performance even in the presence of noise. Detailed evaluations reveal that our approach consistently outperforms existing state-of-the-art methods, particularly in terms of handling noisy data and ensuring computational efficiency under resource *** findings underscore the potential of RRCF as a powerful tool for real-time applications within IoT systems, providing a solid theoretical foundation for future advancements in dynamic anomaly detection. By investigating non-parametric anomalies and analyzing the influence of external factors on data integrity, we uncover hidden patterns amidst dynamic fluctuations. This research emphasizes the need for adaptive strategies in evolving data landscapes, laying the groundwork for enhanced resil
暂无评论