In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We...
详细信息
In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing technique to improve the distribution and statistical properties of the generated data. The post-processed output passes the NIST Sp. 800-22 statistical tests. The system is written in Verilog VHDL and realized on Xilinx Virtex ® FPGA. The generator can fit into a very small area and have a maximum throughput of 2.1 Gb/s.
Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing con...
详细信息
Previous attempts have been devoted to mimic biological vision intelligence at the architectural system level. In this paper, a novel imitation of biological visual system intelligence is suggested, at the device leve...
详细信息
Previous attempts have been devoted to mimic biological vision intelligence at the architectural system level. In this paper, a novel imitation of biological visual system intelligence is suggested, at the device level with the introduction of novel photodiode morphology. The proposed bio-inspired nanorod photodiode puts the depletion region length on the path of the incident photon instead of on its width, as the case is with the planar photodiodes. The depletion region has a revolving volume to increase the photodiode responsivity, and thus its photosensitivity. In addition, it can virtually boost the pixel fill factor (FF) above the 100% classical limit due to decoupling of its vertical sensing area from its limited planar circuitry area. Furthermore, the suggested nanorod photodiode photosensitivity is analytically proven to be higher than that of the planar photodiode. We also show semi-empirically that the responsivity of the suggested device varies linearly with its height; this important feature has been confirmed using Sentaurus simulation. The proposed nano-photorod is believed to meet the increasingly stringent High-Resolution-Low-Light (HRLL) detection requirements of the camera-phone and biomedical imaging markets.
Efficacy of using vertically grown ZnO nanorod array in enhancing electromagnetic field intensity and serving as the top contact layer (transparent electrodes) for solar cells was investigated.
Efficacy of using vertically grown ZnO nanorod array in enhancing electromagnetic field intensity and serving as the top contact layer (transparent electrodes) for solar cells was investigated.
Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photolumi...
详细信息
Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts.
In this paper, we propose a new transmit antenna selection scheme based on shadowing side information. In the proposed scheme, single transmit antenna which has the highest shadowing coefficient is selected. By the pr...
详细信息
In this paper, we propose a new transmit antenna selection scheme based on shadowing side information. In the proposed scheme, single transmit antenna which has the highest shadowing coefficient is selected. By the proposed technique, usage of the feedback channel and channel estimation complexity at the receiver can be reduced. We consider independent but not identically distributed Generalized-K composite fading model, which is a general composite fading & shadowing channel model for wireless environments. Exact closed-form outage probability, moment generating function and symbol error probability expressions are derived. In addition, theoretical performance results are validated by Monte Carlo simulations.
In this paper, we introduce a new methodology to model the uplink inter-cell interference (ICI) in wireless cellular networks. The model takes into account both the effect of channel statistics (i.e., path loss, shado...
详细信息
In this paper, we introduce a new methodology to model the uplink inter-cell interference (ICI) in wireless cellular networks. The model takes into account both the effect of channel statistics (i.e., path loss, shadowing, fading) and the resource allocation scheme in the interfering cells. Firstly, we derive a semi-analytical expression for the distribution of the locations of the allocated user in a given cell considering greedy resource allocation with maximum signal-to-noise ratio (SNR) criterion. Based on this, we derive the distribution of the uplink ICI from one neighboring cell. Next, we compute the moment generating function (MGF) of the cumulative ICI observed from all neighboring cells and discuss some examples. Finally, we utilize the derived expressions to evaluate the outage probability in the network. In order to validate the accuracy of the developed semi-analytical expressions, we present comparison results with Monte Carlo simulations. The major benefit of the proposed mechanism is that it helps in estimating the distribution of ICI without the knowledge of instantaneous resource allocations in the neighbor cells. The proposed methodology applies to any shadowing and fading distributions. Moreover, it can be used to evaluate important network performance metrics numerically without the need for time-consuming Monte Carlo simulations.
Stochastic methods have been used extensively to quantify effects due to uncertainty in system parameters (e.g. material, geometrical, and electrical constants) and/or excitation on observables pertinent to electromag...
详细信息
Stochastic methods have been used extensively to quantify effects due to uncertainty in system parameters (e.g. material, geometrical, and electrical constants) and/or excitation on observables pertinent to electromagnetic compatibility and interference (EMC/EMI) analysis (e.g. voltages across mission-critical circuit elements). In recent years, stochastic collocation (SC) methods, especially those leveraging generalized polynomial chaos (gPC) expansions, have received significant attention. SC-gPC methods probe surrogate models (i.e. compact polynomial input-output representations) to statistically characterize observables. They are nonintrusive, that is they use existing deterministic simulators, and often cost only a fraction of direct Monte-Carlo (MC) methods. Unfortunately, SC-gPC-generated surrogate models often lack accuracy (i) when the number of uncertain/random system variables is large and/or (ii) when the observables exhibit rapid variations.
Resource allocation in orthogonal frequency division multiple access (OFDMA) networks plays an imperative role to guarantee the system performance. However, most of the known resource allocation schemes are focused on...
详细信息
Resource allocation in orthogonal frequency division multiple access (OFDMA) networks plays an imperative role to guarantee the system performance. However, most of the known resource allocation schemes are focused on maximizing the local throughput of each cell, while ignoring the significant effect of inter-cell interference. This paper investigates the problem of resource allocation (i.e., subcarriers and powers) in the uplink of a multi-cell OFDMA network. The problem has a non-convex combinatorial structure and is known to be NP hard. Firstly, we investigate the upper and lower bounds to the average network throughput due to the inherent complexity of implementing the optimal solution. Later, a centralized sub-optimal resource allocation scheme is developed. We further develop less complex centralized and distributed schemes that are well-suited for practical scenarios. The computational complexity of all schemes has been analyzed and the performance is compared through numerical simulations. Simulation results demonstrate that the distributed scheme achieves comparable performance to the centralized resource allocation scheme in various scenarios.
We study the Rayleigh fading non-coherent capacity of secret-key agreement with public discussion, where neither the sender nor the receivers have access to instantaneous channel state information (CSI) of any channel...
详细信息
We study the Rayleigh fading non-coherent capacity of secret-key agreement with public discussion, where neither the sender nor the receivers have access to instantaneous channel state information (CSI) of any channel. We present two results. At high Signal-to-Noise Ratio (SNR), the secret-key capacity is bounded in SNR, regardless of the number of antennas at each terminal. Second, for a system with a single antenna at both the legitimate and the eavesdropper terminals and an arbitrary number of transmit antennas, the secret-key capacity-achieving input distribution is discrete, with a finite number of mass points. Numerically we observe that at low-SNR, the capacity achieving distribution has two mass points with one of them at the origin.
暂无评论