Hybrid switch reluctance motors are the family of switch reluctance motors (SRMs) that attenuate the magnetic saturation and increase the air gap magnetic flux by exploiting permanent magnets. The permanent magnet aux...
详细信息
This paper demonstrates the novel approach of sub-micron-thick InGaAs broadband photodetectors(PDs)designed for high-resolution imaging from the visible to short-wavelength infrared(SWIR)*** approaches encounter chall...
详细信息
This paper demonstrates the novel approach of sub-micron-thick InGaAs broadband photodetectors(PDs)designed for high-resolution imaging from the visible to short-wavelength infrared(SWIR)*** approaches encounter challenges such as low resolution and crosstalk issues caused by a thick absorption layer(AL).Therefore,we propose a guided-mode resonance(GMR)structure to enhance the quantum efficiency(QE)of the InGaAs PDs in the SWIR region with only sub-micron-thick *** TiOx/Au-based GMR structure compensates for the reduced AL thickness,achieving a remarkably high QE(>70%)from 400 to 1700 nm with only a 0.98μm AL InGaAs PD(defined as 1μm AL PD).This represents a reduction in thickness by at least 2.5 times compared to previous results while maintaining a high ***,the rapid transit time is highly expected to result in decreased electrical *** effectiveness of the GMR structure is evident in its ability to sustain QE even with a reduced AL thickness,simultaneously enhancing the transit *** breakthrough offers a viable solution for high-resolution and low-noise broadband image sensors.
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
OpenAI and ChatGPT, as state-of-the-art languagemodels driven by cutting-edge artificial intelligence technology,have gained widespread adoption across diverse industries. In the realm of computer vision, these models...
详细信息
OpenAI and ChatGPT, as state-of-the-art languagemodels driven by cutting-edge artificial intelligence technology,have gained widespread adoption across diverse industries. In the realm of computer vision, these models havebeen employed for intricate tasks including object recognition, image generation, and image processing, leveragingtheir advanced capabilities to fuel transformative breakthroughs. Within the gaming industry, they have foundutility in crafting virtual characters and generating plots and dialogues, thereby enabling immersive and interactiveplayer experiences. Furthermore, these models have been harnessed in the realm of medical diagnosis, providinginvaluable insights and support to healthcare professionals in the realmof disease detection. The principal objectiveof this paper is to offer a comprehensive overview of OpenAI, OpenAI Gym, ChatGPT, DALL E, stable diffusion,the pre-trained clip model, and other pertinent models in various domains, encompassing CLIP Text-to-Image,education, medical imaging, computer vision, social influence, natural language processing, software development,coding assistance, and Chatbot, among others. Particular emphasis will be placed on comparative analysis andexamination of popular text-to-image and text-to-video models under diverse stimuli, shedding light on thecurrent research landscape, emerging trends, and existing challenges within the domains of OpenAI and *** a rigorous literature review, this paper aims to deliver a professional and insightful overview of theadvancements, potentials, and limitations of these pioneering language models.
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consistin...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consisting of multiple,simple metarelations must be driven by domain *** sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this ***,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given ***,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node ***,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link ***,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the *** experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model.
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
Traffic on highways has increased significantly in the past few years. Consequently, this has caused delays for the drivers in reaching their final destination and increased the highway's congestion level. Many op...
详细信息
This article introduces a novel Multi-agent path planning scheme based on Conflict Based Search (CBS) for heterogeneous holonomic and non-holonomic agents, designated as Heterogeneous CBS (HCBS). The proposed methodol...
详细信息
In today's intelligent transportation systems, the effectiveness of image-based analysis relies heavily on image quality. To enhance images while preserving reversibility, this paper proposes a histogram matching-...
详细信息
Mobile devices play a key role in developing mental health focused applications for individuals. The presented research proposes using mobile devices to limit the occurrence of depression in disabled individuals. It p...
详细信息
暂无评论