Power systems are becoming increasingly vulnerable to cyberattacks due to extensive information exchange. This article proposes a novel fuzzy inference system (FIS)-enhanced data integrity attack (DIA)-recovery framew...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the desig...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the design of sequential scanning beams for target detection with the required sensing resolution has not been tackled in the *** bridge this gap, this paper introduces a resolution-aware beam scanning design. In particular, the transmit information beamformer, the covariance matrix of the dedicated radar signal, and the receive beamformer are jointly optimized to maximize the average sum rate of the system while satisfying the sensing resolution and detection probability requirements.A block coordinate descent(BCD)-based optimization framework is developed to address the non-convex design problem. By exploiting successive convex approximation(SCA), S-procedure, and semidefinite relaxation(SDR), the proposed algorithm is guaranteed to converge to a stationary solution with polynomial time complexity. Simulation results show that the proposed design can efficiently handle the stringent detection requirement and outperform existing antenna-activation-based methods in the literature by exploiting the full degrees of freedom(DoFs) brought by all antennas.
Millimeter-wave network deployment is an essential and ongoing problem due to the limited coverage and expensive network infrastructure. In this work, we solve a joint network deployment and resource allocation optimi...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promi...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and ***,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial *** examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong ***,the security of AI models for the digital communication signals identification is the premise of its efficient and credible *** this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial *** we present more detailed adversarial indicators to evaluate attack and defense ***,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
Purpose: Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by sol...
详细信息
Purpose: Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by solving the inverse problem on the measured displacement field from the ultrasound images. The limitations of traditional inverse problem techniques in US elastography are either slow and computationally intensive (iterative techniques) or sensitive to measurement noise and dependent on full displacement field data (direct techniques). Thus, we develop and validate a deep learning approach for solving the inverse problem in US elastography. This involves recovering the spatial modulus distribution of the elastic modulus from one component of the US-measured displacement field. Approach: We present a U-Net-based deep learning neural network to address the inverse problem in ultrasound elastography. This approach diverges from traditional methods by focusing on a data-driven model. The neural network is trained using data generated from a forward finite element model. This simulation incorporates variations in the displacement fields that correspond to the elastic modulus distribution, allowing the network to learn without the need for extensive real-world measurement data. The inverse problem of predicting the modulus spatial distribution from ultrasound-measured displacement fields is addressed using a trained neural network. The neural network is evaluated with mean squared error (MSE) and mean absolute percentage error (MAPE) metrics. To extend our model to practical purposes, we conduct phantom experiments and also apply our model to clinical data. Results: Our simulated results indicate that our deep learning (DL) model effectively reconstructs modulus distributions, as evidenced by low MSE and MAPE evaluation metrics. We obtain a mean MAPE of 0.32% for a hard inclusion and 0.39% for a soft inclusion. Similarly, in our phantom studies, the predicted mo
In modern power systems, renewable energy (RE) sources are increasingly integrated to reduce reliance on fossil-fuel-based generation. However, the uncertainties and lack of rotational inertia associated with renewabl...
详细信息
Recent advancements in wearable and Internet of Things (IoT) technologies have yet to be fully realized in combination with Mixed Reality (MR) for comprehensive real-time health monitoring systems. This paper introduc...
详细信息
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
Sequential Function Chart (SFC) is one of the PLC programming languages defined in the IEC-61131 standard. SFC has been increasingly used in practical applications because even small controllers can now be programmed ...
详细信息
暂无评论