Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)*** paper explores LoRa as an alte...
详细信息
Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)*** paper explores LoRa as an alternative localization technology,leveraging its low power consumption,robust indoor penetration,and extensive coverage area,which render it highly suitable for diverse IoT *** comprehensively review several LoRa-based localization techniques,including time of arrival(ToA),time difference of arrival(TDoA),round trip time(RTT),received signal strength indicator(RSSI),and fingerprinting *** this review,we evaluate the strengths and limitations of each technique and investigate hybrid models to potentially improve positioning *** studies in smart cities,agriculture,and logistics exemplify the versatility of LoRa for indoor and outdoor *** findings demonstrate that LoRa technology not only overcomes the limitations of GPS regarding power consumption and coverage but also enhances the scalability and efficiency of IoT deployments in complex environments.
This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's iterates are influenced both by the values it receives from potentially malicious neigh...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the a...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the adopted datasets for training have correct labeling information. However, such an assumption is not always valid as training data might include measurement samples that are incorrectly labeled as benign, namely, adversarial data poisoning samples, which have not been detected before. Neglecting such an aspect makes detectors susceptible to data poisoning. Our investigations revealed that detection rates (DRs) of existing detectors significantly deteriorate by up to 9-29% when subject to data poisoning in generalized and topology-specific settings. Thus, we propose a generalized graph neural network-based anomaly detector that is robust against FDIAs and data poisoning. It requires only benign datasets for training and employs an autoencoder with Chebyshev graph convolutional recurrent layers with attention mechanism to capture the spatial and temporal correlations within measurement data. The proposed convolutional recurrent graph autoencoder model is trained and tested on various topologies (from 14, 39, and 118-bus systems). Due to such factors, it yields stable generalized detection performance that is degraded by only 1.6-3.7% in DR against high levels of data poisoning and unseen FDIAs in unobserved topologies. Impact Statement-Artificial Intelligence (AI) systems are used in smart grids to detect cyberattacks. They can automatically detect malicious actions carried out bymalicious entities that falsifymeasurement data within power grids. Themajority of such systems are data-driven and rely on labeled data for model training and testing. However, datasets are not always correctly labeled since malicious entities might be carrying out cyberattacks without being detected, which leads to training on mislabeled datasets. Such actions might degrade the d
The integration of renewable energy resources has made power system management increasingly complex. DRL is a potential solution to optimize power system operations, but it requires significant time and resources duri...
详细信息
In this paper, we present a multi-agent deep reinforcement learning (deep RL) framework for network slicing in a dynamic environment with multiple base stations and multiple users. In particular, we propose a novel de...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the desig...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the design of sequential scanning beams for target detection with the required sensing resolution has not been tackled in the *** bridge this gap, this paper introduces a resolution-aware beam scanning design. In particular, the transmit information beamformer, the covariance matrix of the dedicated radar signal, and the receive beamformer are jointly optimized to maximize the average sum rate of the system while satisfying the sensing resolution and detection probability requirements.A block coordinate descent(BCD)-based optimization framework is developed to address the non-convex design problem. By exploiting successive convex approximation(SCA), S-procedure, and semidefinite relaxation(SDR), the proposed algorithm is guaranteed to converge to a stationary solution with polynomial time complexity. Simulation results show that the proposed design can efficiently handle the stringent detection requirement and outperform existing antenna-activation-based methods in the literature by exploiting the full degrees of freedom(DoFs) brought by all antennas.
In this paper, we propose feature-based federated transfer learning as a novel approach to improve communication efficiency by reducing the uplink payload by multiple orders of magnitude compared to that of existing a...
详细信息
The holomorphic embedding method(HEM)stands as a mathematical technique renowned for its favorable convergence properties when resolving algebraic systems involving complex *** key idea behind the HEM is to convert th...
详细信息
The holomorphic embedding method(HEM)stands as a mathematical technique renowned for its favorable convergence properties when resolving algebraic systems involving complex *** key idea behind the HEM is to convert the task of solving complex algebraic equations into a series expansion involving one or multiple embedded complex *** transformation empowers the utilization of complex analysis tools to tackle the original problem *** the 2010s,the HEM has been applied to steady-state and dynamic problems in power systems and has shown superior convergence and robustness compared to traditional numerical *** paper provides a comprehensive review on the diverse applications of the HEM and its variants reported by the literature in the past *** paper discusses both the strengths and limitations of these HEMs and provides guidelines for practical *** also outlines the challenges and potential directions for future research in this field.
Image inpainting consists of filling holes or missing parts of an image. Inpainting face images with symmetric characteristics is more challenging than inpainting a natural scene. None of the powerful existing models ...
详细信息
The main role of Automatic Generation Control (AGC) is to maintain power grids frequency within specified operating limits. Due to the fact that AGC is the sole automatic feedback control loop between physical and cyb...
详细信息
暂无评论