In the construction industry,to prevent accidents,non-destructive tests are necessary and *** impedance tomography is a new technology in non-invasive imaging in which the image of the inner part of conductive bodies ...
详细信息
In the construction industry,to prevent accidents,non-destructive tests are necessary and *** impedance tomography is a new technology in non-invasive imaging in which the image of the inner part of conductive bodies is reconstructed by the arrays of external electrodes that are connected on the periphery of the *** equipment is cheap,fast,and edge *** this imaging method,the image of electrical conductivity distribution(or its opposite;electrical impedance)of the internal parts of the target object is *** image reconstruction process is performed by injecting a precise electric current to the peripheral boundaries of the object,measuring the peripheral voltages induced from it and processing the collected *** an electrical impedance tomography system,the voltages measured in the peripheral boundaries have a non-linear equation with the electrical conductivity *** paper presents a cheap electrical Impedance Tomography(EIT)instrument for detecting impurities in the concrete.A voltage-controlled current source,a micro-controller,a set of multiplexers,a set of electrodes,and a personal computer constitute the structure of the *** conducted tests on concrete with impurities show that the designed EIT system can reveal impurities with a good accuracy in a reasonable time.
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
This study explores the development of a self-driving car using a combination of deep learning (DL), machine learning (ML), computer vision (CV), and convolutional neural networks (CNN). The proposed system aims to si...
详细信息
Intrusion detection is critical to guaranteeing the safety of the data in the *** though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristic...
详细信息
Intrusion detection is critical to guaranteeing the safety of the data in the *** though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion *** challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,*** to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection *** data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as ***,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack *** on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the ***,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced *** selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter ***,the selected features are trained and tested for detecting attacks using *** Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the
The goal of this study is to build a self-driving robot that can effectively navigate mazes by utilizing sophisticated computer vision algorithms with ROS2. Fusion 360 is used to create the robot model, and ROS2 launc...
详细信息
Most blockchain systems currently adopt resource-consuming protocols to achieve consensus between miners;for example,the Proof-of-Work(PoW)and Practical Byzantine Fault Tolerant(PBFT)schemes,which have a high consumpt...
详细信息
Most blockchain systems currently adopt resource-consuming protocols to achieve consensus between miners;for example,the Proof-of-Work(PoW)and Practical Byzantine Fault Tolerant(PBFT)schemes,which have a high consumption of computing/communication resources and usually require reliable communications with bounded ***,these protocols may be unsuitable for Internet of Things(IoT)networks because the IoT devices are usually lightweight,battery-operated,and deployed in an unreliable wireless ***,this paper studies an efficient consensus protocol for blockchain in IoT networks via reinforcement ***,the consensus protocol in this work is designed on the basis of the Proof-of-Communication(PoC)scheme directly in a single-hop wireless network with unreliable communications.A distributed MultiAgent Reinforcement Learning(MARL)algorithm is proposed to improve the efficiency and fairness of consensus for miners in the blockchain *** this algorithm,each agent uses a matrix to depict the efficiency and fairness of the recent consensus and tunes its actions and rewards carefully in an actor-critic framework to seek effective *** results from the simulation show that the fairness of consensus in the proposed algorithm is guaranteed,and the efficiency nearly reaches a centralized optimal solution.
What will happen to Y if we do A? A variety of meaningful social and engineering questions can be formulated this way: What will happen to a patient's health if they are given a new therapy? What will happen to a ...
详细信息
As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required i...
详细信息
As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required in chemical vapor deposition, coating processes, etc. They increase scheduling complexity in cluster tools. In this paper, we focus on scheduling single-arm multi-cluster tools with chamber cleaning operations subject to wafer residency time constraints. When a chamber is being cleaned, it can be viewed as processing a virtual wafer. In this way, chamber cleaning operations can be performed while wafer residency time constraints for real wafers are not violated. Based on such a method, we present the necessary and sufficient conditions to analytically check whether a single-arm multi-cluster tool can be scheduled with a chamber cleaning operation and wafer residency time constraints. An algorithm is proposed to adjust the cycle time for a cleaning operation that lasts a long cleaning ***, algorithms for a feasible schedule are also *** an algorithm is presented for operating a multi-cluster tool back to a steady state after the cleaning. Illustrative examples are given to show the application and effectiveness of the proposed method.
Pretrained language models leverage selfsupervised learning to use large amounts of unlabeled text for learning contextual representations of sequences. However, in the domain of medical conversations, the availabilit...
详细信息
With the rise of cloud computing, multi-user scenarios have become a common setting for data sharing nowadays. The conservative security notion might not be sufficient for such a data sharing model. As a response to t...
详细信息
暂无评论