咨询与建议

限定检索结果

文献类型

  • 799 篇 会议
  • 610 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 1,417 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 733 篇 工学
    • 320 篇 计算机科学与技术...
    • 257 篇 软件工程
    • 163 篇 电气工程
    • 120 篇 信息与通信工程
    • 119 篇 生物医学工程(可授...
    • 103 篇 生物工程
    • 90 篇 控制科学与工程
    • 87 篇 电子科学与技术(可...
    • 77 篇 动力工程及工程热...
    • 49 篇 仪器科学与技术
    • 46 篇 光学工程
    • 45 篇 化学工程与技术
    • 42 篇 机械工程
    • 42 篇 环境科学与工程(可...
    • 37 篇 安全科学与工程
  • 392 篇 理学
    • 141 篇 数学
    • 130 篇 生物学
    • 108 篇 物理学
    • 66 篇 统计学(可授理学、...
    • 47 篇 化学
  • 221 篇 医学
    • 171 篇 临床医学
    • 131 篇 基础医学(可授医学...
    • 100 篇 公共卫生与预防医...
    • 50 篇 药学(可授医学、理...
  • 209 篇 管理学
    • 126 篇 管理科学与工程(可...
    • 89 篇 工商管理
    • 49 篇 图书情报与档案管...
    • 44 篇 公共管理
  • 84 篇 法学
    • 72 篇 社会学
  • 54 篇 经济学
    • 52 篇 应用经济学
  • 31 篇 教育学
  • 23 篇 农学
  • 5 篇 军事学
  • 4 篇 文学
  • 3 篇 哲学
  • 2 篇 历史学
  • 1 篇 艺术学

主题

  • 27 篇 costs
  • 23 篇 machine learning
  • 22 篇 voltage
  • 22 篇 educational inst...
  • 22 篇 power generation
  • 22 篇 feature extracti...
  • 20 篇 cmos technology
  • 19 篇 decision making
  • 18 篇 power systems
  • 18 篇 deep learning
  • 18 篇 computational mo...
  • 18 篇 accuracy
  • 18 篇 data models
  • 17 篇 predictive model...
  • 17 篇 training
  • 16 篇 covid-19
  • 16 篇 reliability
  • 16 篇 optimization
  • 16 篇 data mining
  • 16 篇 generators

机构

  • 32 篇 klipsch school o...
  • 19 篇 department of el...
  • 12 篇 faculty of techn...
  • 11 篇 faculty of elect...
  • 9 篇 health managemen...
  • 9 篇 school of electr...
  • 8 篇 department of el...
  • 8 篇 ieee
  • 8 篇 department of el...
  • 8 篇 school of public...
  • 7 篇 faculty of elect...
  • 7 篇 department of co...
  • 7 篇 department of el...
  • 7 篇 julius centre fo...
  • 7 篇 faculty of techn...
  • 7 篇 department of el...
  • 6 篇 department of ph...
  • 6 篇 school of electr...
  • 6 篇 karachi pakistan
  • 6 篇 health systems a...

作者

  • 18 篇 marija d. ilic
  • 17 篇 jaime ramirez-an...
  • 16 篇 a.j. lopez-marti...
  • 16 篇 j. ramirez-angul...
  • 15 篇 r.g. carvajal
  • 13 篇 marija ilic
  • 13 篇 ramon g. carvaja...
  • 12 篇 ramirez-angulo j...
  • 12 篇 carvajal ramon g...
  • 11 篇 antonio j. lopez...
  • 11 篇 visvakumar aravi...
  • 11 篇 al tamimi
  • 9 篇 celi leo anthony
  • 8 篇 lopez-martin ant...
  • 7 篇 ardabili babak r...
  • 7 篇 abu-gharbieh ema...
  • 7 篇 tabkhi hamed
  • 7 篇 fang ruogu
  • 7 篇 sicker douglas
  • 7 篇 singh rohit

语言

  • 1,328 篇 英文
  • 71 篇 其他
  • 17 篇 中文
  • 1 篇 德文
  • 1 篇 西班牙文
检索条件"机构=Electrical and Computer Engineering and Engineering and Public Policy"
1417 条 记 录,以下是601-610 订阅
排序:
A Multistate Study on Housing Factors Influential to Heat-Related Illness in the United States
SSRN
收藏 引用
SSRN 2022年
作者: Hu, Ming Zhang, Kai Nguyen, Quynh Tasdizen, Tolga Krusche, Krupali Uplekar School of Architecture Planning and Preservation University of Maryland 3835 Campus Drive College ParkMD20742 United States Department of Environmental Health Sciences School of Public Health University at Albany State University of New York One University Place | Room 157 | RensselaerNY12144 United States Epidemiology and Biostatistics University of Maryland School of Public Health Atlantic Bldg. #224 Room 1340K 4254 Stadium Dr College ParkMD20742 United States Electrical and Computer Engineering University of Utah 72 S Central Campus Drive 3750 WEB Salt Lake CityUT84112 United States School of Architecture University of Notre Dame 14 Walsh Family Hall of Architecture Notre DameIN46556 United States
As climate change increases the frequency and intensity of devastating and unpredictable extreme heat events, developments to the built environment should consider instigating practices that minimize the likelihood of... 详细信息
来源: 评论
The Family Level Assessment of Screen Use-Mobile Approach: Development of an Approach to Measure Children's Mobile Device Use
收藏 引用
JMIR Formative Research 2022年 第10期6卷 e40452页
作者: Perez, Oriana Vadathya, Anil Kumar Beltran, Alicia Barnett, R. Matthew Hindera, Olivia Garza, Tatyana Musaad, Salma M. Baranowski, Tom Hughes, Sheryl O. Mendoza, Jason A. Sabharwal, Ashutosh Veeraraghavan, Ashok United States Department of Agriculture Agricultural Research Service Children's Nutrition Research Center Baylor College of Medicine Houston TX United States Department of Electrical & Computer Engineering Rice University Houston TX United States Center for Research Computing Rice University Houston TX United States Baylor College of Medicine Houston TX United States Public Health Sciences Division Fred Hutchinson Cancer Center Seattle WA United States Center for Child Health Behavior and Development Seattle Children's Research Institute Seattle WA United States
Background: There is a strong association between increased mobile device use and worse dietary habits, worse sleep outcomes, and poor academic performance in children. Self-report or parent-proxy report of children&#... 详细信息
来源: 评论
Predicting Transitions from Mild Cognitive Impairment to Dementia within 5-years
收藏 引用
Alzheimer's & Dementia 2023年 第S18期19卷
作者: Samad Amini Boran Hao Jingmei Yang Cody Karjadi Vijaya B. Kolachalama Rhoda Au Ioannis Paschalidis Division of Systems Engineering Boston University Boston MA USA Department of Electrical & Computer Engineering Boston University Boston MA USA Framingham Heart Study Boston University Chobanian & Avedisian School of Medicine Boston MA USA College of Arts & Sciences Boston University Boston MA USA Boston University School of Medicine Boston MA USA Faculty of Computing & Data Sciences Boston University Boston MA USA The Framingham Heart Study Boston University School of Medicine Boston University School of Public Health Boston MA USA Department of Biomedical Engineering Boston University Boston MA USA
Background Early detection of individuals at high risk of future progression toward dementia is in great need, particularly in the era of emerging treatments for Alzheimer’s disease. Given the easier administration o...
来源: 评论
The medical algorithmic audit (vol 4, pg e384, 2022)
收藏 引用
LANCET DIGITAL HEALTH 2022年 第6期4卷 E405-E405页
作者: Liu, X. Glocker, B. McCradden, M. M. Ghassemi, M. Denniston, A. K. Oakden-Rayner, L. Academic Unit of Ophthalmology Institute of Inflammation and Ageing College of Medical and Dental Sciences University of Birmingham UK Department of Ophthalmology University Hospitals Birmingham NHS Foundation Trust Birmingham UK Moorfields Eye Hospital NHS Foundation Trust London UK Health Data Research UK London UK Birmingham Health Partners Centre for Regulatory Science and Innovation University of Birmingham Birmingham UK Biomedical Image Analysis Group Department of Computing Imperial College London London UK The Hospital for Sick Children Toronto ON Canada Dalla Lana School of Public Health Toronto ON Canada Institute for Medical Engineering and Science and Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA USA National Institute of Health Research Biomedical Research Centre for Ophthalmology Moorfields Hospital London NHS Foundation Trust London UK University College London Institute of Ophthalmology London UK Australian Institute for Machine Learning University of Adelaide Adelaide SA Australia. lauren.oakden-rayner@adelaide.edu.au
Artificial intelligence systems for health care, like any other medical device, have the potential to fail. However, specific qualities of artificial intelligence systems, such as the tendency to learn spurious correl...
来源: 评论
The false hope of current approaches to explainable artificial intelligence in health care
收藏 引用
The Lancet Digital Health 2021年 第11期3卷 e745-e750页
作者: Ghassemi, Marzyeh Oakden-Rayner, Luke Beam, Andrew L Department of Electrical Engineering and Computer Science and Institute for Medical and Evaluative Sciences Massachusetts Institute of Technology Cambridge MA United States Vector Institute Toronto ON Canada Australian Institute for Machine Learning University of Adelaide Adelaide SA Australia CAUSALab and Department of Epidemiology Harvard T H Chan School of Public Health Boston MA United States Department of Biomedical Informatics Harvard Medical School Boston MA United States
The black-box nature of current artificial intelligence (AI) has caused some to question whether AI must be explainable to be used in high-stakes scenarios such as medicine. It has been argued that explainable AI will...
来源: 评论
Deep learning applied to chest X-Rays: Exploiting and preventing shortcuts
arXiv
收藏 引用
arXiv 2020年
作者: Jabbour, Sarah Fouhey, David Kazerooni, Ella Sjoding, Michael W. Wiens, Jenna Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI United States Department of Radiology Department of Internal Medicine University of Michigan Ann ArborMI United States Institute for Healthcare Policy & Innovation Department of Internal Medicine University of Michigan Ann ArborMI United States
While deep learning has shown promise in improving the automated diagnosis of disease based on chest X-rays, deep networks may exhibit undesirable behavior related to shortcuts. This paper studies the case of spurious... 详细信息
来源: 评论
Shedding light on inequities of power outages through data transparency
Progress in Energy
收藏 引用
Progress in Energy 2025年 第3期7卷 033003-033003页
作者: Kelly A Stevens Sanam K Aksha Mohammad Siddiqur Rahman Elizabeth Trader Herbert Longenecker Rebecca Entress Thomas Wahl Christopher Emrich Kristopher O Davis School of Public Administration University of Central Florida Orlando FL United States of America Resilient Intelligent and Sustainable Energy Systems (RISES) Research Center University of Central Florida Orlando FL United States of America Florida Solar Energy Center (FSEC) University of Central Florida Orlando FL United States of America Department of Civil Environmental and Construction Engineering University of Central Florida Orlando FL United States of America National Center for Integrated Coastal Research University of Central Florida Orlando FL United States of America Department of Electrical and Computer Engineering University of Central Florida Orlando FL United States of America Department of Political Science University of South Carolina Columbia SC United States of America Department of Materials Science and Engineering University of Central Florida Orlando FL United States of America
In a changing climate, the electricity grid is increasingly exposed to more extreme weather that results in significant power outages. Further, lower income and racial-ethnic minority households are more likely to exp...
来源: 评论
Author Correction: Africa needs context-relevant evidence to shape its clean energy future
收藏 引用
Nature Energy 2024年 907页
作者: Yacob Mulugetta Lucas Somavilla Croxatto Meron Tesfamichael Abdulmutalib Yussuff Youba Sokona Philipp A. Trotter Samuel Fankhauser Jessica Omukuti Bjarne Steffen Edo Abraham Jean-Paul Adam Mekalia Paulos Aklilu Yohannes Hailu Linus Mofor S. Nadia Ouedraogo Lawrence Agbemabiese Churchill Agutu Florian Egli Abdulrasheed Isah Tobias S. Schmidt Olakunle Alao Wikus Kruger Peter Twesigye Bothwell Batidzirai Getachew Bekele Anteneh G. Dagnachew Ogunlade Davidson Fatima Denton E. Ogheneruona Diemuodeke Gebrekidan Gebresilassie Eshetu Mulualem Gebreslassie Mamadou Goundiam Haruna Kachalla Gujba Adam D. Hawkes Stephanie Hirmer Helen Hoka Mark Howells Daniel Kammen Francis Kemausuor Ismail Khennas Ifeoma Malo Minette Nago Destenie Nock Chukwumerije Okereke Benedict Probst Maria Schmidt Carlos Shenga Mohamed Sokona Jan Christoph Steckel Sebastian Sterl Bernard Tembo Julia Tomei Jim Watson Harald Winkler Department of Science Technology Engineering & Public Policy University College London London UK Responsible Technology Institute Department of Computer Science University of Oxford Oxford UK Groupe de Reflection et d’Initiatives Novatrices Bamako Mali Schumpeter School of Business and Economics University of Wuppertal Wuppertal Germany Smith School of Enterprise and the Environment University of Oxford Oxford UK Institute for Science Innovation and Society (INSIS) University of Oxford Oxford UK Climate Finance and Policy Group ETH Zurich Zurich Switzerland Department of Water Management Delft University of Technology Delft the Netherlands United Nations Economic Commission for Africa Addis Ababa Ethiopia Center for Energy & Environmental Policy University of Delaware Newark DE USA Energy and Technology Policy Group ETH Zurich Zurich Switzerland Kigali Collaborative Research Centre Kigali Rwanda IIPP Institute for Innovation and Public Purpose University College London London UK Institute of Science Technology and Policy ETH Zurich Zurich Switzerland Power Futures Lab Graduate School of Business University of Cape Town Cape Town South Africa African Union Development Agency (AUDA-NEPAD) Midrand Johannesburg South Africa School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa Ethiopia PBL Netherlands Environmental Assessment Agency the Hague the Netherlands Utrecht University Utrecht the Netherlands University of Sierra Leone Freetown Sierra Leone United Nations University–Institute for Natural Resources in Africa (UNU–INRA) Accra Ghana Department of Mechanical Engineering University of Port Harcourt Choba Nigeria Institute for Power Electronics and Electrical Drives RWTH Aachen University Aachen Germany Center of Energy Ethiopian Institute of Technology Mekelle University Mekelle Ethiopia Institute of Engineering University Grenoble Alpes Grenoble France GIZ — Africa–EU Energy Partnership (AEEP) Addis
来源: 评论
Pattern-Based Analysis of Time Series: Estimation
arXiv
收藏 引用
arXiv 2020年
作者: Sabeti, Elyas Song, Peter X.K. Hero, Alfred O. Michigan Institute for Data Science University of Michigan Ann ArborMI48109 United States School of Public Health Department of Biostatistics University of Michigan Ann ArborMI48109 United States Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI48109 United States
While Internet of Things (IoT) devices and sensors create continuous streams of information, Big Data infrastructures are deemed to handle the influx of data in real-time. One type of such a continuous stream of infor... 详细信息
来源: 评论
Ethical machine learning in health care
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Irene Y. Pierson, Emma Rose, Sherri Joshi, Shalmali Ferryman, Kadija Ghassemi, Marzyeh Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA02139 United States Microsoft Research CambridgeMA02143 United States Center for Health Policy Center for Primary Care and Outcomes Research Stanford University StanfordCA94305 United States Vector Institute TorontoON Canada Department of Technology Culture and Society Tandon School of Engineering New York University BrooklynNY11201 United States Department of Computer Science University of Toronto TorontoON Canada
The use of machine learning (ML) in health care raises numerous ethical concerns, especially as models can amplify existing health inequities. Here, we outline ethical considerations for equitable ML in the advancemen... 详细信息
来源: 评论