Safe, socially compliant, and efficient navigation of low-speed autonomous vehicles (AVs) in pedestrian-rich environments necessitates considering pedestrians' future positions and interactions with the vehicle an...
详细信息
Safe, socially compliant, and efficient navigation of low-speed autonomous vehicles (AVs) in pedestrian-rich environments necessitates considering pedestrians' future positions and interactions with the vehicle and others. Despite the inevitable uncertainties associated with pedestrians' predicted trajectories due to their unobserved states (e.g., intent), existing deep reinforcement learning (DRL) algorithms for crowd navigation often neglect these uncertainties when using predicted trajectories to guide policy learning. This omission limits the usability of predictions when diverging from ground truth. This work introduces an integrated prediction and planning approach that incorporates the uncertainties of predicted pedestrian states in the training of a model-free DRL algorithm. A novel reward function encourages the AV to respect pedestrians' personal space, decrease speed during close approaches, and minimize the collision probability with their predicted paths. Unlike previous DRL methods, our model, designed for AV operation in crowded spaces, is trained in a novel simulation environment that reflects realistic pedestrian behaviour in a shared space with vehicles. Results show a 40% decrease in collision rate and a 15% increase in minimum distance to pedestrians compared to the state of the art model that does not account for prediction uncertainty. Additionally, the approach outperforms model predictive control methods that incorporate the same prediction uncertainties in terms of both performance and computational time, while producing trajectories closer to human drivers in similar scenarios. IEEE
Failure is an inevitable phenomenon, therefore, it is essential to develop state-of-the-art failure analysis tools that are able to deal with it. Even though there are several failure analysis tools, they lack the abi...
详细信息
The importance of Model Predictive Control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control ***,the complexity of the greenhouse and its limited prior knowledge...
详细信息
The importance of Model Predictive Control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control ***,the complexity of the greenhouse and its limited prior knowledge prevent an exact mathematical description of the *** methods provide a promising solution to this issue through their capacity to identify the system’s comportment using the fit between model output and observed *** this paper,we introduce an application of Constrained Model Predictive Control(CMPC)for a greenhouse temperature and relative *** this purpose,two Multi Input Single Output(MISO)systems,using Numerical Subspace State Space System Identification(N4SID)algorithm,are firstly suggested to identify the temperature and the relative humidity comportment to heating and ventilation *** this sense,linear state space models were adopted in order to evaluate the robustness of the control *** the system is identified,the MPC technique is applied for the temperature and the humidity *** results show that the regulation of the temperature and the relative humidity under constraints was guaranteed,both parameters respect the ranges 15℃≤T_(int)≤30℃and 50%≤H_(int)≤70%*** the other hand,the control signals uf and uh applied to the fan and the heater,respect the hard constraints notion,the control signals for the fan and the heater did not exceed 0≤uf≤4.3 Volts and 0≤uh≤5 Volts,respectively,which proves the effectiveness of the MPC and the tracking ***,we show that with the proposed technique,using a new optimization toolbox,the computational complexity has been significantly *** greenhouse in question is devoted to Schefflera Arboricola cultivation.
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection *** study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural net...
详细信息
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection *** study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection *** common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection *** integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware *** on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional *** approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity *** results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions.
Under perfect competition,marginal pricing results in short-term efficiency and the subsequent right short-term price ***,the main reason for the adoption of marginal pricing is not the above,but investment cost *** i...
详细信息
Under perfect competition,marginal pricing results in short-term efficiency and the subsequent right short-term price ***,the main reason for the adoption of marginal pricing is not the above,but investment cost *** is,the fact that the profits obtained by infra-marginal technologies(technologies whose production cost is below the marginal price)allow them just to recover their investment *** the other hand,if the perfect competition assumption is removed,investment over-recovery or under-recovery generally occurs for infra-marginal technologies.
The permanent magnet (PM) Vernier machines enhance torque density and decrease cogging torque compared to conventional permanent magnet synchronous motor. This paper presents a novel fractional-slot H-shaped PM Vernie...
详细信息
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first prop...
详细信息
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first proposed in this ***,a novel four-dimensional fractional-order memristive cellular neural network(FO-MCNN)model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its ***,its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation ***,it is used toward secure communication application *** it as the pseudo-random number generator(PRNG),a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing(ASR-CS)***,the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance.
This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)*** phasors from PMUs ...
详细信息
This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)*** phasors from PMUs are preprocessed to check for the presence of *** the presence is established,the signal is decomposed using EWT and the parameters of the mono-components are estimated through Yoshida *** superiority of the proposed method is tested using test signals with known parameters and simulated using actual SSO signals from the Hami Power Grid in Northwest *** show the effectiveness of the proposed EWT-Yoshida method in detecting the SSO and estimating its parameters.
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
The onset of Industry 4.0 is rapidly transforming the manufacturing world through the integration of cloud computing, machine learning (ML), artificial intelligence (AI), and universal network connectivity, resulting ...
详细信息
暂无评论