We consider regenerating codes in distributed storage systems where connections between the nodes are constrained by a graph. In this problem, the failed node downloads the information stored at a subset of vertices o...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
Changes in the Atmospheric Electric Field Signal(AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information ...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information implicit in AEFS changes. In this paper, a Fuzzy C-Means(FCM) clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS. First, a time series dataset is created in the time domain using AEFS attributes. The AEFS-based weather is evaluated according to the time-series Membership Degree(MD) changes obtained by inputting this dataset into the FCM. Second, thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus. Thus, a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain. Finally, the rationality and reliability of the proposed method are verified by combining radar charts and expert experience. The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS, and a negative distance-MD correlation is obtained for the first time. The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
This paper considers the sequential design of remedial control actions in response to system anomalies to prevent blackouts. A physics-guided reinforcement learning (RL) framework is designed to identify effective seq...
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
Amidst rising distributed generation and its potential role in grid management, this article presents a new realistic approach to determine the operational space and flexibility potential of an unbalanced active distr...
详细信息
Integrated sensing and communication (ISAC) is a promising solution to mitigate the increasing congestion of the wireless spectrum. In this paper, we investigate the short packet communication regime within an ISAC sy...
详细信息
The protection of the power system component is crucial for the healthy and reliable operation of the entire grid. Depending upon the equipment being protected and the type of fault it may encounter, various protectio...
详细信息
This article defines embeddings between state-based and action-based probabilistic logics which can be used to support probabilistic model checking. First, we slightly modify the model embeddings proposed in the liter...
详细信息
Convolutional neural networks (CNNs), one of the key architectures of deep learning models, have achieved superior performance on many machine learning tasks such as image classification, video recognition, and power ...
详细信息
暂无评论