With 5G and beyond promises to realize massive machine-type communications, a wide range of applications have driven interest in complex heterogeneous networked systems, including multi-agent optimization, large-scale...
详细信息
ISBN:
(纸本)9798350371000;9798350370997
With 5G and beyond promises to realize massive machine-type communications, a wide range of applications have driven interest in complex heterogeneous networked systems, including multi-agent optimization, large-scale distributed learning, 5G service provisioning, etc. This trend highlights the essence of seamless control, management, and security mechanisms to be in place for the next-generation networked cyber-physical systems (CPS). In this paper, we interpret trust as a relation among networked collaborating entities that can set forth a measure for evaluating the status of network components and secure the execution of the collaborative protocol. In this paper, we will first elaborate on the importance of trust as a metric and then present a mathematical framework for trust computation and aggregation within a network. We consider two use-case examples where trust can be incorporated into the next-generation networked CPS and improve the security of decision-making, i.e. i) federated learning (FL), and ii) network resource provisioning. Finally, we explain the challenges associated with aggregating the trust evidence and briefly explain our ideas to tackle them.
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
This paper presents a data-driven variable reduction approach to accelerate the computation of large-scale transmission-constrained unit commitment(TCUC).Lagrangian relaxation(LR)and mixed-integer linear programming(M...
详细信息
This paper presents a data-driven variable reduction approach to accelerate the computation of large-scale transmission-constrained unit commitment(TCUC).Lagrangian relaxation(LR)and mixed-integer linear programming(MILP)are popular approaches to solving ***,with many binary unit commitment variables,LR suffers from slow convergence and MILP presents heavy computation *** proposed data-driven variable reduction approach consists of offline and online calculations to accelerate computational performance of the MILP-based large-scale TCUC problems.A database including multiple nodal net load intervals and the corresponding TCUC solutions is first built offline via the data-driven and all-scenario-feasible(ASF)approaches,which is then leveraged to efficiently solve new TCUC instances ***/off statuses of considerable units can be fixed in the online calculation according to the database,which would reduce the computation burden while guaranteeing good solution quality for new TCUC instances.A feasibility proposition is proposed to promptly check the feasibility of the new TCUC instances with fixed binary variables,which can be used to dynamically tune parameters of binary variable fixing strategies and guarantee the existence of feasible UC solutions even when system structure *** tests illustrate the efficiency of the proposed approach.
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
Amidst rising distributed generation and its potential role in grid management, this article presents a new realistic approach to determine the operational space and flexibility potential of an unbalanced active distr...
详细信息
Integrated sensing and communication (ISAC) is a promising solution to mitigate the increasing congestion of the wireless spectrum. In this paper, we investigate the short packet communication regime within an ISAC sy...
详细信息
This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)*** phasors from PMUs ...
详细信息
This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)*** phasors from PMUs are preprocessed to check for the presence of *** the presence is established,the signal is decomposed using EWT and the parameters of the mono-components are estimated through Yoshida *** superiority of the proposed method is tested using test signals with known parameters and simulated using actual SSO signals from the Hami Power Grid in Northwest *** show the effectiveness of the proposed EWT-Yoshida method in detecting the SSO and estimating its parameters.
Federated Learning (FL), an emerging distributed Artificial Intelligence (AI) technique, is susceptible to jamming attacks during the wireless transmission of trained models. In this letter, we introduce a jamming att...
详细信息
This paper presents a review on methods for class-imbalanced learning with the Support Vector Machine (SVM) and its variants. We first explain the structure of SVM and its variants and discuss their inefficiency in le...
详细信息
暂无评论