Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
This paper presents CMOS circuit designs of a ternary adder and a ternary multiplier,formulated using transmission function *** carry signals appearing in these designs allow conventional look-ahead carry techniques t...
详细信息
This paper presents CMOS circuit designs of a ternary adder and a ternary multiplier,formulated using transmission function *** carry signals appearing in these designs allow conventional look-ahead carry techniques to be *** with previous similar designs,the circuits proposed in this paper have advantages such as low dissipation,low output impedance,and simplicity of construction.
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their trans...
详细信息
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant *** challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy *** works often conflated safety issues with security *** contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of *** on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in ***,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
This book highlights recent research works on computer science, electrical and electronicengineering which was presented virtually during the 3rd International Conference on computer Science, Electrical & Electro...
详细信息
ISBN:
(数字)9789811697814
ISBN:
(纸本)9789811697807;9789811697838
This book highlights recent research works on computer science, electrical and electronicengineering which was presented virtually during the 3rd International Conference on computer Science, Electrical & electronicengineering (ICCEE 2021), August 2021. Written by leading researchers and industry professionals, the papers highlight recent advances and address current issues in the respective fields.
The difficulty of unbalanced datasets in classification issues has become more noticeable with the fast expansion of data science and machine learning approaches. When confronted with uneven data, conventional machine...
详细信息
Terahertz (THz) massive multiple-input multiple-output (mMIMO) has recently gained significant attention because of its ability to deliver a high data rate and offer a high capacity. In this letter, a novel sub-surfac...
详细信息
Identifying drug–target interactions (DTIs) is a critical step in both drug repositioning. The labor-intensive, time-consuming, and costly nature of classic DTI laboratory studies makes it imperative to create effici...
详细信息
The dilation pulse (DP) is a critical factor influencing temporal performance of magnetic focusing pulse-dilation framing camera (PDFC). As DP propagates along photocathode (PC), it not only induces variations in acce...
详细信息
暂无评论